Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
|- ( X e. A -> E. x x = X ) |
2 |
1
|
adantl |
|- ( ( R _FrSe A /\ X e. A ) -> E. x x = X ) |
3 |
|
bnj93 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V ) |
4 |
|
eleq1 |
|- ( x = X -> ( x e. A <-> X e. A ) ) |
5 |
4
|
anbi2d |
|- ( x = X -> ( ( R _FrSe A /\ x e. A ) <-> ( R _FrSe A /\ X e. A ) ) ) |
6 |
|
bnj602 |
|- ( x = X -> _pred ( x , A , R ) = _pred ( X , A , R ) ) |
7 |
6
|
eleq1d |
|- ( x = X -> ( _pred ( x , A , R ) e. _V <-> _pred ( X , A , R ) e. _V ) ) |
8 |
5 7
|
imbi12d |
|- ( x = X -> ( ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V ) <-> ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) ) ) |
9 |
3 8
|
mpbii |
|- ( x = X -> ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) ) |
10 |
2 9
|
bnj593 |
|- ( ( R _FrSe A /\ X e. A ) -> E. x ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) ) |
11 |
10
|
bnj937 |
|- ( ( R _FrSe A /\ X e. A ) -> ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) ) |
12 |
11
|
pm2.43i |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) |