| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elisset | 
							 |-  ( X e. A -> E. x x = X )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							 |-  ( ( R _FrSe A /\ X e. A ) -> E. x x = X )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj93 | 
							 |-  ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V )  | 
						
						
							| 4 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = X -> ( x e. A <-> X e. A ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							anbi2d | 
							 |-  ( x = X -> ( ( R _FrSe A /\ x e. A ) <-> ( R _FrSe A /\ X e. A ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj602 | 
							 |-  ( x = X -> _pred ( x , A , R ) = _pred ( X , A , R ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq1d | 
							 |-  ( x = X -> ( _pred ( x , A , R ) e. _V <-> _pred ( X , A , R ) e. _V ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							imbi12d | 
							 |-  ( x = X -> ( ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V ) <-> ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							mpbii | 
							 |-  ( x = X -> ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							bnj593 | 
							 |-  ( ( R _FrSe A /\ X e. A ) -> E. x ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							bnj937 | 
							 |-  ( ( R _FrSe A /\ X e. A ) -> ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							pm2.43i | 
							 |-  ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V )  |