Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1173.3 |
|- C = ( _trCl ( X , A , R ) i^i B ) |
2 |
|
bnj1173.5 |
|- ( th <-> ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) ) |
3 |
|
bnj1173.9 |
|- ( ( ph /\ ps ) -> R _FrSe A ) |
4 |
|
bnj1173.17 |
|- ( ( ph /\ ps ) -> X e. A ) |
5 |
|
3simpc |
|- ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) -> ( ( R _FrSe A /\ z e. A ) /\ w e. A ) ) |
6 |
3
|
3adant3 |
|- ( ( ph /\ ps /\ z e. C ) -> R _FrSe A ) |
7 |
4
|
3adant3 |
|- ( ( ph /\ ps /\ z e. C ) -> X e. A ) |
8 |
|
elin |
|- ( z e. ( _trCl ( X , A , R ) i^i B ) <-> ( z e. _trCl ( X , A , R ) /\ z e. B ) ) |
9 |
8
|
simplbi |
|- ( z e. ( _trCl ( X , A , R ) i^i B ) -> z e. _trCl ( X , A , R ) ) |
10 |
9 1
|
eleq2s |
|- ( z e. C -> z e. _trCl ( X , A , R ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( ph /\ ps /\ z e. C ) -> z e. _trCl ( X , A , R ) ) |
12 |
|
pm3.21 |
|- ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) -> ( ( ( R _FrSe A /\ z e. A ) /\ w e. A ) -> ( ( ( R _FrSe A /\ z e. A ) /\ w e. A ) /\ ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) ) ) ) |
13 |
6 7 11 12
|
syl3anc |
|- ( ( ph /\ ps /\ z e. C ) -> ( ( ( R _FrSe A /\ z e. A ) /\ w e. A ) -> ( ( ( R _FrSe A /\ z e. A ) /\ w e. A ) /\ ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) ) ) ) |
14 |
|
bnj170 |
|- ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) <-> ( ( ( R _FrSe A /\ z e. A ) /\ w e. A ) /\ ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) ) ) |
15 |
13 14
|
syl6ibr |
|- ( ( ph /\ ps /\ z e. C ) -> ( ( ( R _FrSe A /\ z e. A ) /\ w e. A ) -> ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) ) ) |
16 |
5 15
|
impbid2 |
|- ( ( ph /\ ps /\ z e. C ) -> ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) <-> ( ( R _FrSe A /\ z e. A ) /\ w e. A ) ) ) |
17 |
2 16
|
syl5bb |
|- ( ( ph /\ ps /\ z e. C ) -> ( th <-> ( ( R _FrSe A /\ z e. A ) /\ w e. A ) ) ) |
18 |
|
bnj1147 |
|- _trCl ( X , A , R ) C_ A |
19 |
18 11
|
bnj1213 |
|- ( ( ph /\ ps /\ z e. C ) -> z e. A ) |
20 |
6 19
|
jca |
|- ( ( ph /\ ps /\ z e. C ) -> ( R _FrSe A /\ z e. A ) ) |
21 |
20
|
biantrurd |
|- ( ( ph /\ ps /\ z e. C ) -> ( w e. A <-> ( ( R _FrSe A /\ z e. A ) /\ w e. A ) ) ) |
22 |
17 21
|
bitr4d |
|- ( ( ph /\ ps /\ z e. C ) -> ( th <-> w e. A ) ) |