Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1175.3 |
|- C = ( _trCl ( X , A , R ) i^i B ) |
2 |
|
bnj1175.4 |
|- ( ch <-> ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ ( w e. A /\ w R z ) ) ) |
3 |
|
bnj1175.5 |
|- ( th <-> ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) ) |
4 |
|
bnj255 |
|- ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A /\ w R z ) <-> ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ ( w e. A /\ w R z ) ) ) |
5 |
|
df-bnj17 |
|- ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A /\ w R z ) <-> ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) /\ w R z ) ) |
6 |
2 4 5
|
3bitr2i |
|- ( ch <-> ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) /\ w R z ) ) |
7 |
3
|
anbi1i |
|- ( ( th /\ w R z ) <-> ( ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) /\ ( R _FrSe A /\ z e. A ) /\ w e. A ) /\ w R z ) ) |
8 |
6 7
|
bitr4i |
|- ( ch <-> ( th /\ w R z ) ) |
9 |
|
bnj1125 |
|- ( ( R _FrSe A /\ X e. A /\ z e. _trCl ( X , A , R ) ) -> _trCl ( z , A , R ) C_ _trCl ( X , A , R ) ) |
10 |
2 9
|
bnj835 |
|- ( ch -> _trCl ( z , A , R ) C_ _trCl ( X , A , R ) ) |
11 |
|
bnj906 |
|- ( ( R _FrSe A /\ z e. A ) -> _pred ( z , A , R ) C_ _trCl ( z , A , R ) ) |
12 |
2 11
|
bnj836 |
|- ( ch -> _pred ( z , A , R ) C_ _trCl ( z , A , R ) ) |
13 |
|
bnj1152 |
|- ( w e. _pred ( z , A , R ) <-> ( w e. A /\ w R z ) ) |
14 |
13
|
biimpri |
|- ( ( w e. A /\ w R z ) -> w e. _pred ( z , A , R ) ) |
15 |
2 14
|
bnj837 |
|- ( ch -> w e. _pred ( z , A , R ) ) |
16 |
12 15
|
sseldd |
|- ( ch -> w e. _trCl ( z , A , R ) ) |
17 |
10 16
|
sseldd |
|- ( ch -> w e. _trCl ( X , A , R ) ) |
18 |
8 17
|
sylbir |
|- ( ( th /\ w R z ) -> w e. _trCl ( X , A , R ) ) |
19 |
18
|
ex |
|- ( th -> ( w R z -> w e. _trCl ( X , A , R ) ) ) |