Metamath Proof Explorer


Theorem bnj1196

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1196.1
|- ( ph -> E. x e. A ps )
Assertion bnj1196
|- ( ph -> E. x ( x e. A /\ ps ) )

Proof

Step Hyp Ref Expression
1 bnj1196.1
 |-  ( ph -> E. x e. A ps )
2 df-rex
 |-  ( E. x e. A ps <-> E. x ( x e. A /\ ps ) )
3 1 2 sylib
 |-  ( ph -> E. x ( x e. A /\ ps ) )