Metamath Proof Explorer


Theorem bnj1211

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1211.1
|- ( ph -> A. x e. A ps )
Assertion bnj1211
|- ( ph -> A. x ( x e. A -> ps ) )

Proof

Step Hyp Ref Expression
1 bnj1211.1
 |-  ( ph -> A. x e. A ps )
2 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
3 1 2 sylib
 |-  ( ph -> A. x ( x e. A -> ps ) )