Metamath Proof Explorer


Theorem bnj1213

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1213.1
|- A C_ B
bnj1213.2
|- ( th -> x e. A )
Assertion bnj1213
|- ( th -> x e. B )

Proof

Step Hyp Ref Expression
1 bnj1213.1
 |-  A C_ B
2 bnj1213.2
 |-  ( th -> x e. A )
3 1 2 sselid
 |-  ( th -> x e. B )