Metamath Proof Explorer


Theorem bnj1219

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1219.1
|- ( ch <-> ( ph /\ ps /\ ze ) )
bnj1219.2
|- ( th <-> ( ch /\ ta /\ et ) )
Assertion bnj1219
|- ( th -> ps )

Proof

Step Hyp Ref Expression
1 bnj1219.1
 |-  ( ch <-> ( ph /\ ps /\ ze ) )
2 bnj1219.2
 |-  ( th <-> ( ch /\ ta /\ et ) )
3 1 simp2bi
 |-  ( ch -> ps )
4 2 3 bnj835
 |-  ( th -> ps )