Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1224.1 | |- -. ( th /\ ta /\ et )  | 
					|
| Assertion | bnj1224 | |- ( ( th /\ ta ) -> -. et )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1224.1 | |- -. ( th /\ ta /\ et )  | 
						|
| 2 | df-3an | |- ( ( th /\ ta /\ et ) <-> ( ( th /\ ta ) /\ et ) )  | 
						|
| 3 | 1 2 | mtbi | |- -. ( ( th /\ ta ) /\ et )  | 
						
| 4 | 3 | imnani | |- ( ( th /\ ta ) -> -. et )  |