Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1230.1 | |- B = { x e. A | ph } |
|
Assertion | bnj1230 | |- ( y e. B -> A. x y e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1230.1 | |- B = { x e. A | ph } |
|
2 | nfrab1 | |- F/_ x { x e. A | ph } |
|
3 | 1 2 | nfcxfr | |- F/_ x B |
4 | 3 | nfcrii | |- ( y e. B -> A. x y e. B ) |