Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1232.1 | |- ( ph <-> ( ps /\ ch /\ th /\ ta ) ) |
|
Assertion | bnj1232 | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1232.1 | |- ( ph <-> ( ps /\ ch /\ th /\ ta ) ) |
|
2 | bnj642 | |- ( ( ps /\ ch /\ th /\ ta ) -> ps ) |
|
3 | 1 2 | sylbi | |- ( ph -> ps ) |