| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1234.2 | 
							 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1234.3 | 
							 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
						
							| 3 | 
							
								
							 | 
							bnj1234.4 | 
							 |-  Z = <. x , ( g |` _pred ( x , A , R ) ) >.  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1234.5 | 
							 |-  D = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) } | 
						
						
							| 5 | 
							
								
							 | 
							fneq1 | 
							 |-  ( f = g -> ( f Fn d <-> g Fn d ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq1 | 
							 |-  ( f = g -> ( f ` x ) = ( g ` x ) )  | 
						
						
							| 7 | 
							
								
							 | 
							reseq1 | 
							 |-  ( f = g -> ( f |` _pred ( x , A , R ) ) = ( g |` _pred ( x , A , R ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							opeq2d | 
							 |-  ( f = g -> <. x , ( f |` _pred ( x , A , R ) ) >. = <. x , ( g |` _pred ( x , A , R ) ) >. )  | 
						
						
							| 9 | 
							
								8 1 3
							 | 
							3eqtr4g | 
							 |-  ( f = g -> Y = Z )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( f = g -> ( G ` Y ) = ( G ` Z ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							eqeq12d | 
							 |-  ( f = g -> ( ( f ` x ) = ( G ` Y ) <-> ( g ` x ) = ( G ` Z ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ralbidv | 
							 |-  ( f = g -> ( A. x e. d ( f ` x ) = ( G ` Y ) <-> A. x e. d ( g ` x ) = ( G ` Z ) ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							anbi12d | 
							 |-  ( f = g -> ( ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rexbidv | 
							 |-  ( f = g -> ( E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							cbvabv | 
							 |-  { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) } | 
						
						
							| 16 | 
							
								15 2 4
							 | 
							3eqtr4i | 
							 |-  C = D  |