Metamath Proof Explorer


Theorem bnj1234

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1234.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1234.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1234.4
|- Z = <. x , ( g |` _pred ( x , A , R ) ) >.
bnj1234.5
|- D = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) }
Assertion bnj1234
|- C = D

Proof

Step Hyp Ref Expression
1 bnj1234.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
2 bnj1234.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
3 bnj1234.4
 |-  Z = <. x , ( g |` _pred ( x , A , R ) ) >.
4 bnj1234.5
 |-  D = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) }
5 fneq1
 |-  ( f = g -> ( f Fn d <-> g Fn d ) )
6 fveq1
 |-  ( f = g -> ( f ` x ) = ( g ` x ) )
7 reseq1
 |-  ( f = g -> ( f |` _pred ( x , A , R ) ) = ( g |` _pred ( x , A , R ) ) )
8 7 opeq2d
 |-  ( f = g -> <. x , ( f |` _pred ( x , A , R ) ) >. = <. x , ( g |` _pred ( x , A , R ) ) >. )
9 8 1 3 3eqtr4g
 |-  ( f = g -> Y = Z )
10 9 fveq2d
 |-  ( f = g -> ( G ` Y ) = ( G ` Z ) )
11 6 10 eqeq12d
 |-  ( f = g -> ( ( f ` x ) = ( G ` Y ) <-> ( g ` x ) = ( G ` Z ) ) )
12 11 ralbidv
 |-  ( f = g -> ( A. x e. d ( f ` x ) = ( G ` Y ) <-> A. x e. d ( g ` x ) = ( G ` Z ) ) )
13 5 12 anbi12d
 |-  ( f = g -> ( ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) )
14 13 rexbidv
 |-  ( f = g -> ( E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) )
15 14 cbvabv
 |-  { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) }
16 15 2 4 3eqtr4i
 |-  C = D