Metamath Proof Explorer


Theorem bnj1238

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1238.1
|- ( ph <-> E. x e. A ( ps /\ ch ) )
Assertion bnj1238
|- ( ph -> E. x e. A ps )

Proof

Step Hyp Ref Expression
1 bnj1238.1
 |-  ( ph <-> E. x e. A ( ps /\ ch ) )
2 bnj1239
 |-  ( E. x e. A ( ps /\ ch ) -> E. x e. A ps )
3 1 2 sylbi
 |-  ( ph -> E. x e. A ps )