| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1245.1 | 
							 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
						
						
							| 2 | 
							
								
							 | 
							bnj1245.2 | 
							 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1245.3 | 
							 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
						
							| 4 | 
							
								
							 | 
							bnj1245.4 | 
							 |-  D = ( dom g i^i dom h )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1245.5 | 
							 |-  E = { x e. D | ( g ` x ) =/= ( h ` x ) } | 
						
						
							| 6 | 
							
								
							 | 
							bnj1245.6 | 
							 |-  ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1245.7 | 
							 |-  ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1245.8 | 
							 |-  Z = <. x , ( h |` _pred ( x , A , R ) ) >.  | 
						
						
							| 9 | 
							
								
							 | 
							bnj1245.9 | 
							 |-  K = { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` Z ) ) } | 
						
						
							| 10 | 
							
								6
							 | 
							bnj1247 | 
							 |-  ( ph -> h e. C )  | 
						
						
							| 11 | 
							
								2 3 8 9
							 | 
							bnj1234 | 
							 |-  C = K  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eleqtrdi | 
							 |-  ( ph -> h e. K )  | 
						
						
							| 13 | 
							
								9
							 | 
							eqabri | 
							 |-  ( h e. K <-> E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` Z ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							bnj1238 | 
							 |-  ( h e. K -> E. d e. B h Fn d )  | 
						
						
							| 15 | 
							
								14
							 | 
							bnj1196 | 
							 |-  ( h e. K -> E. d ( d e. B /\ h Fn d ) )  | 
						
						
							| 16 | 
							
								1
							 | 
							eqabri | 
							 |-  ( d e. B <-> ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simplbi | 
							 |-  ( d e. B -> d C_ A )  | 
						
						
							| 18 | 
							
								
							 | 
							fndm | 
							 |-  ( h Fn d -> dom h = d )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							bnj1241 | 
							 |-  ( ( d e. B /\ h Fn d ) -> dom h C_ A )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							bnj593 | 
							 |-  ( h e. K -> E. d dom h C_ A )  | 
						
						
							| 21 | 
							
								20
							 | 
							bnj937 | 
							 |-  ( h e. K -> dom h C_ A )  | 
						
						
							| 22 | 
							
								12 21
							 | 
							syl | 
							 |-  ( ph -> dom h C_ A )  |