Step |
Hyp |
Ref |
Expression |
1 |
|
bnj125.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj125.2 |
|- ( ph' <-> [. 1o / n ]. ph ) |
3 |
|
bnj125.3 |
|- ( ph" <-> [. F / f ]. ph' ) |
4 |
|
bnj125.4 |
|- F = { <. (/) , _pred ( x , A , R ) >. } |
5 |
2
|
sbcbii |
|- ( [. F / f ]. ph' <-> [. F / f ]. [. 1o / n ]. ph ) |
6 |
|
bnj105 |
|- 1o e. _V |
7 |
1 6
|
bnj91 |
|- ( [. 1o / n ]. ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
8 |
7
|
sbcbii |
|- ( [. F / f ]. [. 1o / n ]. ph <-> [. F / f ]. ( f ` (/) ) = _pred ( x , A , R ) ) |
9 |
4
|
bnj95 |
|- F e. _V |
10 |
|
fveq1 |
|- ( f = F -> ( f ` (/) ) = ( F ` (/) ) ) |
11 |
10
|
eqeq1d |
|- ( f = F -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( F ` (/) ) = _pred ( x , A , R ) ) ) |
12 |
9 11
|
sbcie |
|- ( [. F / f ]. ( f ` (/) ) = _pred ( x , A , R ) <-> ( F ` (/) ) = _pred ( x , A , R ) ) |
13 |
8 12
|
bitri |
|- ( [. F / f ]. [. 1o / n ]. ph <-> ( F ` (/) ) = _pred ( x , A , R ) ) |
14 |
5 13
|
bitri |
|- ( [. F / f ]. ph' <-> ( F ` (/) ) = _pred ( x , A , R ) ) |
15 |
3 14
|
bitri |
|- ( ph" <-> ( F ` (/) ) = _pred ( x , A , R ) ) |