Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1253.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1253.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1253.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1253.4 |
|- D = ( dom g i^i dom h ) |
5 |
|
bnj1253.5 |
|- E = { x e. D | ( g ` x ) =/= ( h ` x ) } |
6 |
|
bnj1253.6 |
|- ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) ) |
7 |
|
bnj1253.7 |
|- ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) ) |
8 |
6
|
bnj1254 |
|- ( ph -> ( g |` D ) =/= ( h |` D ) ) |
9 |
1 2 3 4 5 6 7
|
bnj1256 |
|- ( ph -> E. d e. B g Fn d ) |
10 |
4
|
bnj1292 |
|- D C_ dom g |
11 |
|
fndm |
|- ( g Fn d -> dom g = d ) |
12 |
10 11
|
sseqtrid |
|- ( g Fn d -> D C_ d ) |
13 |
|
fnssres |
|- ( ( g Fn d /\ D C_ d ) -> ( g |` D ) Fn D ) |
14 |
12 13
|
mpdan |
|- ( g Fn d -> ( g |` D ) Fn D ) |
15 |
9 14
|
bnj31 |
|- ( ph -> E. d e. B ( g |` D ) Fn D ) |
16 |
15
|
bnj1265 |
|- ( ph -> ( g |` D ) Fn D ) |
17 |
1 2 3 4 5 6 7
|
bnj1259 |
|- ( ph -> E. d e. B h Fn d ) |
18 |
4
|
bnj1293 |
|- D C_ dom h |
19 |
|
fndm |
|- ( h Fn d -> dom h = d ) |
20 |
18 19
|
sseqtrid |
|- ( h Fn d -> D C_ d ) |
21 |
|
fnssres |
|- ( ( h Fn d /\ D C_ d ) -> ( h |` D ) Fn D ) |
22 |
20 21
|
mpdan |
|- ( h Fn d -> ( h |` D ) Fn D ) |
23 |
17 22
|
bnj31 |
|- ( ph -> E. d e. B ( h |` D ) Fn D ) |
24 |
23
|
bnj1265 |
|- ( ph -> ( h |` D ) Fn D ) |
25 |
|
ssid |
|- D C_ D |
26 |
|
fvreseq |
|- ( ( ( ( g |` D ) Fn D /\ ( h |` D ) Fn D ) /\ D C_ D ) -> ( ( ( g |` D ) |` D ) = ( ( h |` D ) |` D ) <-> A. x e. D ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) ) ) |
27 |
25 26
|
mpan2 |
|- ( ( ( g |` D ) Fn D /\ ( h |` D ) Fn D ) -> ( ( ( g |` D ) |` D ) = ( ( h |` D ) |` D ) <-> A. x e. D ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) ) ) |
28 |
16 24 27
|
syl2anc |
|- ( ph -> ( ( ( g |` D ) |` D ) = ( ( h |` D ) |` D ) <-> A. x e. D ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) ) ) |
29 |
|
residm |
|- ( ( g |` D ) |` D ) = ( g |` D ) |
30 |
|
residm |
|- ( ( h |` D ) |` D ) = ( h |` D ) |
31 |
29 30
|
eqeq12i |
|- ( ( ( g |` D ) |` D ) = ( ( h |` D ) |` D ) <-> ( g |` D ) = ( h |` D ) ) |
32 |
|
df-ral |
|- ( A. x e. D ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) <-> A. x ( x e. D -> ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) ) ) |
33 |
28 31 32
|
3bitr3g |
|- ( ph -> ( ( g |` D ) = ( h |` D ) <-> A. x ( x e. D -> ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) ) ) ) |
34 |
|
fvres |
|- ( x e. D -> ( ( g |` D ) ` x ) = ( g ` x ) ) |
35 |
|
fvres |
|- ( x e. D -> ( ( h |` D ) ` x ) = ( h ` x ) ) |
36 |
34 35
|
eqeq12d |
|- ( x e. D -> ( ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) <-> ( g ` x ) = ( h ` x ) ) ) |
37 |
36
|
pm5.74i |
|- ( ( x e. D -> ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) ) <-> ( x e. D -> ( g ` x ) = ( h ` x ) ) ) |
38 |
37
|
albii |
|- ( A. x ( x e. D -> ( ( g |` D ) ` x ) = ( ( h |` D ) ` x ) ) <-> A. x ( x e. D -> ( g ` x ) = ( h ` x ) ) ) |
39 |
33 38
|
bitrdi |
|- ( ph -> ( ( g |` D ) = ( h |` D ) <-> A. x ( x e. D -> ( g ` x ) = ( h ` x ) ) ) ) |
40 |
39
|
necon3abid |
|- ( ph -> ( ( g |` D ) =/= ( h |` D ) <-> -. A. x ( x e. D -> ( g ` x ) = ( h ` x ) ) ) ) |
41 |
|
df-rex |
|- ( E. x e. D ( g ` x ) =/= ( h ` x ) <-> E. x ( x e. D /\ ( g ` x ) =/= ( h ` x ) ) ) |
42 |
|
pm4.61 |
|- ( -. ( x e. D -> ( g ` x ) = ( h ` x ) ) <-> ( x e. D /\ -. ( g ` x ) = ( h ` x ) ) ) |
43 |
|
df-ne |
|- ( ( g ` x ) =/= ( h ` x ) <-> -. ( g ` x ) = ( h ` x ) ) |
44 |
43
|
anbi2i |
|- ( ( x e. D /\ ( g ` x ) =/= ( h ` x ) ) <-> ( x e. D /\ -. ( g ` x ) = ( h ` x ) ) ) |
45 |
42 44
|
bitr4i |
|- ( -. ( x e. D -> ( g ` x ) = ( h ` x ) ) <-> ( x e. D /\ ( g ` x ) =/= ( h ` x ) ) ) |
46 |
45
|
exbii |
|- ( E. x -. ( x e. D -> ( g ` x ) = ( h ` x ) ) <-> E. x ( x e. D /\ ( g ` x ) =/= ( h ` x ) ) ) |
47 |
|
exnal |
|- ( E. x -. ( x e. D -> ( g ` x ) = ( h ` x ) ) <-> -. A. x ( x e. D -> ( g ` x ) = ( h ` x ) ) ) |
48 |
41 46 47
|
3bitr2ri |
|- ( -. A. x ( x e. D -> ( g ` x ) = ( h ` x ) ) <-> E. x e. D ( g ` x ) =/= ( h ` x ) ) |
49 |
40 48
|
bitrdi |
|- ( ph -> ( ( g |` D ) =/= ( h |` D ) <-> E. x e. D ( g ` x ) =/= ( h ` x ) ) ) |
50 |
8 49
|
mpbid |
|- ( ph -> E. x e. D ( g ` x ) =/= ( h ` x ) ) |
51 |
5
|
neeq1i |
|- ( E =/= (/) <-> { x e. D | ( g ` x ) =/= ( h ` x ) } =/= (/) ) |
52 |
|
rabn0 |
|- ( { x e. D | ( g ` x ) =/= ( h ` x ) } =/= (/) <-> E. x e. D ( g ` x ) =/= ( h ` x ) ) |
53 |
51 52
|
bitri |
|- ( E =/= (/) <-> E. x e. D ( g ` x ) =/= ( h ` x ) ) |
54 |
50 53
|
sylibr |
|- ( ph -> E =/= (/) ) |