Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1256.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1256.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1256.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1256.4 |
|- D = ( dom g i^i dom h ) |
5 |
|
bnj1256.5 |
|- E = { x e. D | ( g ` x ) =/= ( h ` x ) } |
6 |
|
bnj1256.6 |
|- ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) ) |
7 |
|
bnj1256.7 |
|- ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) ) |
8 |
|
abid |
|- ( g e. { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) } <-> E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) ) |
9 |
8
|
bnj1238 |
|- ( g e. { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) } -> E. d e. B g Fn d ) |
10 |
|
eqid |
|- <. x , ( g |` _pred ( x , A , R ) ) >. = <. x , ( g |` _pred ( x , A , R ) ) >. |
11 |
|
eqid |
|- { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) } = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) } |
12 |
2 3 10 11
|
bnj1234 |
|- C = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) } |
13 |
9 12
|
eleq2s |
|- ( g e. C -> E. d e. B g Fn d ) |
14 |
6 13
|
bnj770 |
|- ( ph -> E. d e. B g Fn d ) |