| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1259.1 | 
							 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
						
						
							| 2 | 
							
								
							 | 
							bnj1259.2 | 
							 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1259.3 | 
							 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
						
							| 4 | 
							
								
							 | 
							bnj1259.4 | 
							 |-  D = ( dom g i^i dom h )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1259.5 | 
							 |-  E = { x e. D | ( g ` x ) =/= ( h ` x ) } | 
						
						
							| 6 | 
							
								
							 | 
							bnj1259.6 | 
							 |-  ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1259.7 | 
							 |-  ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) )  | 
						
						
							| 8 | 
							
								
							 | 
							abid | 
							 |-  ( h e. { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` <. x , ( h |` _pred ( x , A , R ) ) >. ) ) } <-> E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` <. x , ( h |` _pred ( x , A , R ) ) >. ) ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							bnj1238 | 
							 |-  ( h e. { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` <. x , ( h |` _pred ( x , A , R ) ) >. ) ) } -> E. d e. B h Fn d ) | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  <. x , ( h |` _pred ( x , A , R ) ) >. = <. x , ( h |` _pred ( x , A , R ) ) >.  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` <. x , ( h |` _pred ( x , A , R ) ) >. ) ) } = { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` <. x , ( h |` _pred ( x , A , R ) ) >. ) ) } | 
						
						
							| 12 | 
							
								2 3 10 11
							 | 
							bnj1234 | 
							 |-  C = { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` <. x , ( h |` _pred ( x , A , R ) ) >. ) ) } | 
						
						
							| 13 | 
							
								9 12
							 | 
							eleq2s | 
							 |-  ( h e. C -> E. d e. B h Fn d )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							bnj771 | 
							 |-  ( ph -> E. d e. B h Fn d )  |