Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1265.1 | |- ( ph -> E. x e. A ps )  | 
					|
| Assertion | bnj1265 | |- ( ph -> ps )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1265.1 | |- ( ph -> E. x e. A ps )  | 
						|
| 2 | 1 | bnj1196 | |- ( ph -> E. x ( x e. A /\ ps ) )  | 
						
| 3 | 2 | bnj1266 | |- ( ph -> E. x ps )  | 
						
| 4 | 3 | bnj937 | |- ( ph -> ps )  |