Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1275.1 | |- ( ph -> E. x ( ps /\ ch ) ) |
|
bnj1275.2 | |- ( ph -> A. x ph ) |
||
Assertion | bnj1275 | |- ( ph -> E. x ( ph /\ ps /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1275.1 | |- ( ph -> E. x ( ps /\ ch ) ) |
|
2 | bnj1275.2 | |- ( ph -> A. x ph ) |
|
3 | 2 1 | bnj596 | |- ( ph -> E. x ( ph /\ ( ps /\ ch ) ) ) |
4 | 3anass | |- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
5 | 3 4 | bnj1198 | |- ( ph -> E. x ( ph /\ ps /\ ch ) ) |