Metamath Proof Explorer


Theorem bnj1275

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1275.1
|- ( ph -> E. x ( ps /\ ch ) )
bnj1275.2
|- ( ph -> A. x ph )
Assertion bnj1275
|- ( ph -> E. x ( ph /\ ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 bnj1275.1
 |-  ( ph -> E. x ( ps /\ ch ) )
2 bnj1275.2
 |-  ( ph -> A. x ph )
3 2 1 bnj596
 |-  ( ph -> E. x ( ph /\ ( ps /\ ch ) ) )
4 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
5 3 4 bnj1198
 |-  ( ph -> E. x ( ph /\ ps /\ ch ) )