Metamath Proof Explorer


Theorem bnj1276

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1276.1
|- ( ph -> A. x ph )
bnj1276.2
|- ( ps -> A. x ps )
bnj1276.3
|- ( ch -> A. x ch )
bnj1276.4
|- ( th <-> ( ph /\ ps /\ ch ) )
Assertion bnj1276
|- ( th -> A. x th )

Proof

Step Hyp Ref Expression
1 bnj1276.1
 |-  ( ph -> A. x ph )
2 bnj1276.2
 |-  ( ps -> A. x ps )
3 bnj1276.3
 |-  ( ch -> A. x ch )
4 bnj1276.4
 |-  ( th <-> ( ph /\ ps /\ ch ) )
5 1 2 3 hb3an
 |-  ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )
6 4 5 hbxfrbi
 |-  ( th -> A. x th )