Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1280.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1280.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1280.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1280.4 |
|- D = ( dom g i^i dom h ) |
5 |
|
bnj1280.5 |
|- E = { x e. D | ( g ` x ) =/= ( h ` x ) } |
6 |
|
bnj1280.6 |
|- ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) ) |
7 |
|
bnj1280.7 |
|- ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) ) |
8 |
|
bnj1280.17 |
|- ( ps -> ( _pred ( x , A , R ) i^i E ) = (/) ) |
9 |
1 2 3 4 5 6 7
|
bnj1286 |
|- ( ps -> _pred ( x , A , R ) C_ D ) |
10 |
9
|
sseld |
|- ( ps -> ( z e. _pred ( x , A , R ) -> z e. D ) ) |
11 |
|
disj1 |
|- ( ( _pred ( x , A , R ) i^i E ) = (/) <-> A. z ( z e. _pred ( x , A , R ) -> -. z e. E ) ) |
12 |
8 11
|
sylib |
|- ( ps -> A. z ( z e. _pred ( x , A , R ) -> -. z e. E ) ) |
13 |
12
|
19.21bi |
|- ( ps -> ( z e. _pred ( x , A , R ) -> -. z e. E ) ) |
14 |
|
fveq2 |
|- ( x = z -> ( g ` x ) = ( g ` z ) ) |
15 |
|
fveq2 |
|- ( x = z -> ( h ` x ) = ( h ` z ) ) |
16 |
14 15
|
neeq12d |
|- ( x = z -> ( ( g ` x ) =/= ( h ` x ) <-> ( g ` z ) =/= ( h ` z ) ) ) |
17 |
16 5
|
elrab2 |
|- ( z e. E <-> ( z e. D /\ ( g ` z ) =/= ( h ` z ) ) ) |
18 |
17
|
notbii |
|- ( -. z e. E <-> -. ( z e. D /\ ( g ` z ) =/= ( h ` z ) ) ) |
19 |
|
imnan |
|- ( ( z e. D -> -. ( g ` z ) =/= ( h ` z ) ) <-> -. ( z e. D /\ ( g ` z ) =/= ( h ` z ) ) ) |
20 |
|
nne |
|- ( -. ( g ` z ) =/= ( h ` z ) <-> ( g ` z ) = ( h ` z ) ) |
21 |
20
|
imbi2i |
|- ( ( z e. D -> -. ( g ` z ) =/= ( h ` z ) ) <-> ( z e. D -> ( g ` z ) = ( h ` z ) ) ) |
22 |
18 19 21
|
3bitr2i |
|- ( -. z e. E <-> ( z e. D -> ( g ` z ) = ( h ` z ) ) ) |
23 |
13 22
|
syl6ib |
|- ( ps -> ( z e. _pred ( x , A , R ) -> ( z e. D -> ( g ` z ) = ( h ` z ) ) ) ) |
24 |
10 23
|
mpdd |
|- ( ps -> ( z e. _pred ( x , A , R ) -> ( g ` z ) = ( h ` z ) ) ) |
25 |
24
|
imp |
|- ( ( ps /\ z e. _pred ( x , A , R ) ) -> ( g ` z ) = ( h ` z ) ) |
26 |
|
fvres |
|- ( z e. D -> ( ( g |` D ) ` z ) = ( g ` z ) ) |
27 |
10 26
|
syl6 |
|- ( ps -> ( z e. _pred ( x , A , R ) -> ( ( g |` D ) ` z ) = ( g ` z ) ) ) |
28 |
27
|
imp |
|- ( ( ps /\ z e. _pred ( x , A , R ) ) -> ( ( g |` D ) ` z ) = ( g ` z ) ) |
29 |
|
fvres |
|- ( z e. D -> ( ( h |` D ) ` z ) = ( h ` z ) ) |
30 |
10 29
|
syl6 |
|- ( ps -> ( z e. _pred ( x , A , R ) -> ( ( h |` D ) ` z ) = ( h ` z ) ) ) |
31 |
30
|
imp |
|- ( ( ps /\ z e. _pred ( x , A , R ) ) -> ( ( h |` D ) ` z ) = ( h ` z ) ) |
32 |
25 28 31
|
3eqtr4d |
|- ( ( ps /\ z e. _pred ( x , A , R ) ) -> ( ( g |` D ) ` z ) = ( ( h |` D ) ` z ) ) |
33 |
32
|
ralrimiva |
|- ( ps -> A. z e. _pred ( x , A , R ) ( ( g |` D ) ` z ) = ( ( h |` D ) ` z ) ) |
34 |
9
|
resabs1d |
|- ( ps -> ( ( g |` D ) |` _pred ( x , A , R ) ) = ( g |` _pred ( x , A , R ) ) ) |
35 |
9
|
resabs1d |
|- ( ps -> ( ( h |` D ) |` _pred ( x , A , R ) ) = ( h |` _pred ( x , A , R ) ) ) |
36 |
34 35
|
eqeq12d |
|- ( ps -> ( ( ( g |` D ) |` _pred ( x , A , R ) ) = ( ( h |` D ) |` _pred ( x , A , R ) ) <-> ( g |` _pred ( x , A , R ) ) = ( h |` _pred ( x , A , R ) ) ) ) |
37 |
1 2 3 4 5 6 7
|
bnj1256 |
|- ( ph -> E. d e. B g Fn d ) |
38 |
4
|
bnj1292 |
|- D C_ dom g |
39 |
|
fndm |
|- ( g Fn d -> dom g = d ) |
40 |
38 39
|
sseqtrid |
|- ( g Fn d -> D C_ d ) |
41 |
|
fnssres |
|- ( ( g Fn d /\ D C_ d ) -> ( g |` D ) Fn D ) |
42 |
40 41
|
mpdan |
|- ( g Fn d -> ( g |` D ) Fn D ) |
43 |
37 42
|
bnj31 |
|- ( ph -> E. d e. B ( g |` D ) Fn D ) |
44 |
43
|
bnj1265 |
|- ( ph -> ( g |` D ) Fn D ) |
45 |
7 44
|
bnj835 |
|- ( ps -> ( g |` D ) Fn D ) |
46 |
1 2 3 4 5 6 7
|
bnj1259 |
|- ( ph -> E. d e. B h Fn d ) |
47 |
4
|
bnj1293 |
|- D C_ dom h |
48 |
|
fndm |
|- ( h Fn d -> dom h = d ) |
49 |
47 48
|
sseqtrid |
|- ( h Fn d -> D C_ d ) |
50 |
|
fnssres |
|- ( ( h Fn d /\ D C_ d ) -> ( h |` D ) Fn D ) |
51 |
49 50
|
mpdan |
|- ( h Fn d -> ( h |` D ) Fn D ) |
52 |
46 51
|
bnj31 |
|- ( ph -> E. d e. B ( h |` D ) Fn D ) |
53 |
52
|
bnj1265 |
|- ( ph -> ( h |` D ) Fn D ) |
54 |
7 53
|
bnj835 |
|- ( ps -> ( h |` D ) Fn D ) |
55 |
|
fvreseq |
|- ( ( ( ( g |` D ) Fn D /\ ( h |` D ) Fn D ) /\ _pred ( x , A , R ) C_ D ) -> ( ( ( g |` D ) |` _pred ( x , A , R ) ) = ( ( h |` D ) |` _pred ( x , A , R ) ) <-> A. z e. _pred ( x , A , R ) ( ( g |` D ) ` z ) = ( ( h |` D ) ` z ) ) ) |
56 |
45 54 9 55
|
syl21anc |
|- ( ps -> ( ( ( g |` D ) |` _pred ( x , A , R ) ) = ( ( h |` D ) |` _pred ( x , A , R ) ) <-> A. z e. _pred ( x , A , R ) ( ( g |` D ) ` z ) = ( ( h |` D ) ` z ) ) ) |
57 |
36 56
|
bitr3d |
|- ( ps -> ( ( g |` _pred ( x , A , R ) ) = ( h |` _pred ( x , A , R ) ) <-> A. z e. _pred ( x , A , R ) ( ( g |` D ) ` z ) = ( ( h |` D ) ` z ) ) ) |
58 |
33 57
|
mpbird |
|- ( ps -> ( g |` _pred ( x , A , R ) ) = ( h |` _pred ( x , A , R ) ) ) |