Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1286.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1286.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1286.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1286.4 |
|- D = ( dom g i^i dom h ) |
5 |
|
bnj1286.5 |
|- E = { x e. D | ( g ` x ) =/= ( h ` x ) } |
6 |
|
bnj1286.6 |
|- ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) ) |
7 |
|
bnj1286.7 |
|- ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) ) |
8 |
1 2 3 4 5 6 7
|
bnj1256 |
|- ( ph -> E. d e. B g Fn d ) |
9 |
8
|
bnj1196 |
|- ( ph -> E. d ( d e. B /\ g Fn d ) ) |
10 |
1
|
bnj1517 |
|- ( d e. B -> A. x e. d _pred ( x , A , R ) C_ d ) |
11 |
10
|
adantr |
|- ( ( d e. B /\ g Fn d ) -> A. x e. d _pred ( x , A , R ) C_ d ) |
12 |
|
fndm |
|- ( g Fn d -> dom g = d ) |
13 |
|
sseq2 |
|- ( dom g = d -> ( _pred ( x , A , R ) C_ dom g <-> _pred ( x , A , R ) C_ d ) ) |
14 |
13
|
raleqbi1dv |
|- ( dom g = d -> ( A. x e. dom g _pred ( x , A , R ) C_ dom g <-> A. x e. d _pred ( x , A , R ) C_ d ) ) |
15 |
12 14
|
syl |
|- ( g Fn d -> ( A. x e. dom g _pred ( x , A , R ) C_ dom g <-> A. x e. d _pred ( x , A , R ) C_ d ) ) |
16 |
15
|
adantl |
|- ( ( d e. B /\ g Fn d ) -> ( A. x e. dom g _pred ( x , A , R ) C_ dom g <-> A. x e. d _pred ( x , A , R ) C_ d ) ) |
17 |
11 16
|
mpbird |
|- ( ( d e. B /\ g Fn d ) -> A. x e. dom g _pred ( x , A , R ) C_ dom g ) |
18 |
9 17
|
bnj593 |
|- ( ph -> E. d A. x e. dom g _pred ( x , A , R ) C_ dom g ) |
19 |
18
|
bnj937 |
|- ( ph -> A. x e. dom g _pred ( x , A , R ) C_ dom g ) |
20 |
7 19
|
bnj835 |
|- ( ps -> A. x e. dom g _pred ( x , A , R ) C_ dom g ) |
21 |
5
|
ssrab3 |
|- E C_ D |
22 |
4
|
bnj1292 |
|- D C_ dom g |
23 |
21 22
|
sstri |
|- E C_ dom g |
24 |
23
|
sseli |
|- ( x e. E -> x e. dom g ) |
25 |
7 24
|
bnj836 |
|- ( ps -> x e. dom g ) |
26 |
20 25
|
bnj1294 |
|- ( ps -> _pred ( x , A , R ) C_ dom g ) |
27 |
1 2 3 4 5 6 7
|
bnj1259 |
|- ( ph -> E. d e. B h Fn d ) |
28 |
27
|
bnj1196 |
|- ( ph -> E. d ( d e. B /\ h Fn d ) ) |
29 |
10
|
adantr |
|- ( ( d e. B /\ h Fn d ) -> A. x e. d _pred ( x , A , R ) C_ d ) |
30 |
|
fndm |
|- ( h Fn d -> dom h = d ) |
31 |
|
sseq2 |
|- ( dom h = d -> ( _pred ( x , A , R ) C_ dom h <-> _pred ( x , A , R ) C_ d ) ) |
32 |
31
|
raleqbi1dv |
|- ( dom h = d -> ( A. x e. dom h _pred ( x , A , R ) C_ dom h <-> A. x e. d _pred ( x , A , R ) C_ d ) ) |
33 |
30 32
|
syl |
|- ( h Fn d -> ( A. x e. dom h _pred ( x , A , R ) C_ dom h <-> A. x e. d _pred ( x , A , R ) C_ d ) ) |
34 |
33
|
adantl |
|- ( ( d e. B /\ h Fn d ) -> ( A. x e. dom h _pred ( x , A , R ) C_ dom h <-> A. x e. d _pred ( x , A , R ) C_ d ) ) |
35 |
29 34
|
mpbird |
|- ( ( d e. B /\ h Fn d ) -> A. x e. dom h _pred ( x , A , R ) C_ dom h ) |
36 |
28 35
|
bnj593 |
|- ( ph -> E. d A. x e. dom h _pred ( x , A , R ) C_ dom h ) |
37 |
36
|
bnj937 |
|- ( ph -> A. x e. dom h _pred ( x , A , R ) C_ dom h ) |
38 |
7 37
|
bnj835 |
|- ( ps -> A. x e. dom h _pred ( x , A , R ) C_ dom h ) |
39 |
4
|
bnj1293 |
|- D C_ dom h |
40 |
21 39
|
sstri |
|- E C_ dom h |
41 |
40
|
sseli |
|- ( x e. E -> x e. dom h ) |
42 |
7 41
|
bnj836 |
|- ( ps -> x e. dom h ) |
43 |
38 42
|
bnj1294 |
|- ( ps -> _pred ( x , A , R ) C_ dom h ) |
44 |
26 43
|
ssind |
|- ( ps -> _pred ( x , A , R ) C_ ( dom g i^i dom h ) ) |
45 |
44 4
|
sseqtrrdi |
|- ( ps -> _pred ( x , A , R ) C_ D ) |