Metamath Proof Explorer


Theorem bnj1294

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1294.1
|- ( ph -> A. x e. A ps )
bnj1294.2
|- ( ph -> x e. A )
Assertion bnj1294
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 bnj1294.1
 |-  ( ph -> A. x e. A ps )
2 bnj1294.2
 |-  ( ph -> x e. A )
3 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
4 sp
 |-  ( A. x ( x e. A -> ps ) -> ( x e. A -> ps ) )
5 4 impcom
 |-  ( ( x e. A /\ A. x ( x e. A -> ps ) ) -> ps )
6 3 5 sylan2b
 |-  ( ( x e. A /\ A. x e. A ps ) -> ps )
7 2 1 6 syl2anc
 |-  ( ph -> ps )