Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1294.1 | |- ( ph -> A. x e. A ps ) |
|
bnj1294.2 | |- ( ph -> x e. A ) |
||
Assertion | bnj1294 | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1294.1 | |- ( ph -> A. x e. A ps ) |
|
2 | bnj1294.2 | |- ( ph -> x e. A ) |
|
3 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
4 | sp | |- ( A. x ( x e. A -> ps ) -> ( x e. A -> ps ) ) |
|
5 | 4 | impcom | |- ( ( x e. A /\ A. x ( x e. A -> ps ) ) -> ps ) |
6 | 3 5 | sylan2b | |- ( ( x e. A /\ A. x e. A ps ) -> ps ) |
7 | 2 1 6 | syl2anc | |- ( ph -> ps ) |