Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1296.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1296.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1296.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1296.4 |
|- D = ( dom g i^i dom h ) |
5 |
|
bnj1296.5 |
|- E = { x e. D | ( g ` x ) =/= ( h ` x ) } |
6 |
|
bnj1296.6 |
|- ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) ) |
7 |
|
bnj1296.7 |
|- ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) ) |
8 |
|
bnj1296.18 |
|- ( ps -> ( g |` _pred ( x , A , R ) ) = ( h |` _pred ( x , A , R ) ) ) |
9 |
|
bnj1296.9 |
|- Z = <. x , ( g |` _pred ( x , A , R ) ) >. |
10 |
|
bnj1296.10 |
|- K = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) } |
11 |
|
bnj1296.11 |
|- W = <. x , ( h |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1296.12 |
|- L = { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` W ) ) } |
13 |
8
|
opeq2d |
|- ( ps -> <. x , ( g |` _pred ( x , A , R ) ) >. = <. x , ( h |` _pred ( x , A , R ) ) >. ) |
14 |
13 9 11
|
3eqtr4g |
|- ( ps -> Z = W ) |
15 |
14
|
fveq2d |
|- ( ps -> ( G ` Z ) = ( G ` W ) ) |
16 |
10
|
bnj1436 |
|- ( g e. K -> E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) |
17 |
|
fndm |
|- ( g Fn d -> dom g = d ) |
18 |
17
|
anim1i |
|- ( ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) -> ( dom g = d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) |
19 |
16 18
|
bnj31 |
|- ( g e. K -> E. d e. B ( dom g = d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) |
20 |
|
raleq |
|- ( dom g = d -> ( A. x e. dom g ( g ` x ) = ( G ` Z ) <-> A. x e. d ( g ` x ) = ( G ` Z ) ) ) |
21 |
20
|
pm5.32i |
|- ( ( dom g = d /\ A. x e. dom g ( g ` x ) = ( G ` Z ) ) <-> ( dom g = d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) |
22 |
21
|
rexbii |
|- ( E. d e. B ( dom g = d /\ A. x e. dom g ( g ` x ) = ( G ` Z ) ) <-> E. d e. B ( dom g = d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) |
23 |
19 22
|
sylibr |
|- ( g e. K -> E. d e. B ( dom g = d /\ A. x e. dom g ( g ` x ) = ( G ` Z ) ) ) |
24 |
|
simpr |
|- ( ( dom g = d /\ A. x e. dom g ( g ` x ) = ( G ` Z ) ) -> A. x e. dom g ( g ` x ) = ( G ` Z ) ) |
25 |
23 24
|
bnj31 |
|- ( g e. K -> E. d e. B A. x e. dom g ( g ` x ) = ( G ` Z ) ) |
26 |
25
|
bnj1265 |
|- ( g e. K -> A. x e. dom g ( g ` x ) = ( G ` Z ) ) |
27 |
2 3 9 10
|
bnj1234 |
|- C = K |
28 |
26 27
|
eleq2s |
|- ( g e. C -> A. x e. dom g ( g ` x ) = ( G ` Z ) ) |
29 |
6 28
|
bnj770 |
|- ( ph -> A. x e. dom g ( g ` x ) = ( G ` Z ) ) |
30 |
7 29
|
bnj835 |
|- ( ps -> A. x e. dom g ( g ` x ) = ( G ` Z ) ) |
31 |
4
|
bnj1292 |
|- D C_ dom g |
32 |
5 7
|
bnj1212 |
|- ( ps -> x e. D ) |
33 |
31 32
|
bnj1213 |
|- ( ps -> x e. dom g ) |
34 |
30 33
|
bnj1294 |
|- ( ps -> ( g ` x ) = ( G ` Z ) ) |
35 |
12
|
bnj1436 |
|- ( h e. L -> E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` W ) ) ) |
36 |
|
fndm |
|- ( h Fn d -> dom h = d ) |
37 |
36
|
anim1i |
|- ( ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` W ) ) -> ( dom h = d /\ A. x e. d ( h ` x ) = ( G ` W ) ) ) |
38 |
35 37
|
bnj31 |
|- ( h e. L -> E. d e. B ( dom h = d /\ A. x e. d ( h ` x ) = ( G ` W ) ) ) |
39 |
|
raleq |
|- ( dom h = d -> ( A. x e. dom h ( h ` x ) = ( G ` W ) <-> A. x e. d ( h ` x ) = ( G ` W ) ) ) |
40 |
39
|
pm5.32i |
|- ( ( dom h = d /\ A. x e. dom h ( h ` x ) = ( G ` W ) ) <-> ( dom h = d /\ A. x e. d ( h ` x ) = ( G ` W ) ) ) |
41 |
40
|
rexbii |
|- ( E. d e. B ( dom h = d /\ A. x e. dom h ( h ` x ) = ( G ` W ) ) <-> E. d e. B ( dom h = d /\ A. x e. d ( h ` x ) = ( G ` W ) ) ) |
42 |
38 41
|
sylibr |
|- ( h e. L -> E. d e. B ( dom h = d /\ A. x e. dom h ( h ` x ) = ( G ` W ) ) ) |
43 |
|
simpr |
|- ( ( dom h = d /\ A. x e. dom h ( h ` x ) = ( G ` W ) ) -> A. x e. dom h ( h ` x ) = ( G ` W ) ) |
44 |
42 43
|
bnj31 |
|- ( h e. L -> E. d e. B A. x e. dom h ( h ` x ) = ( G ` W ) ) |
45 |
44
|
bnj1265 |
|- ( h e. L -> A. x e. dom h ( h ` x ) = ( G ` W ) ) |
46 |
2 3 11 12
|
bnj1234 |
|- C = L |
47 |
45 46
|
eleq2s |
|- ( h e. C -> A. x e. dom h ( h ` x ) = ( G ` W ) ) |
48 |
6 47
|
bnj771 |
|- ( ph -> A. x e. dom h ( h ` x ) = ( G ` W ) ) |
49 |
7 48
|
bnj835 |
|- ( ps -> A. x e. dom h ( h ` x ) = ( G ` W ) ) |
50 |
4
|
bnj1293 |
|- D C_ dom h |
51 |
50 32
|
bnj1213 |
|- ( ps -> x e. dom h ) |
52 |
49 51
|
bnj1294 |
|- ( ps -> ( h ` x ) = ( G ` W ) ) |
53 |
15 34 52
|
3eqtr4d |
|- ( ps -> ( g ` x ) = ( h ` x ) ) |