Metamath Proof Explorer


Theorem bnj1307

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1307.1
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1307.2
|- ( w e. B -> A. x w e. B )
Assertion bnj1307
|- ( w e. C -> A. x w e. C )

Proof

Step Hyp Ref Expression
1 bnj1307.1
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
2 bnj1307.2
 |-  ( w e. B -> A. x w e. B )
3 2 nfcii
 |-  F/_ x B
4 nfv
 |-  F/ x f Fn d
5 nfra1
 |-  F/ x A. x e. d ( f ` x ) = ( G ` Y )
6 4 5 nfan
 |-  F/ x ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) )
7 3 6 nfrex
 |-  F/ x E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) )
8 7 nfab
 |-  F/_ x { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
9 1 8 nfcxfr
 |-  F/_ x C
10 9 nfcrii
 |-  ( w e. C -> A. x w e. C )