Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1316.1 | |- ( y e. A -> A. x y e. A )  | 
					|
| bnj1316.2 | |- ( y e. B -> A. x y e. B )  | 
					||
| Assertion | bnj1316 | |- ( A = B -> U_ x e. A C = U_ x e. B C )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1316.1 | |- ( y e. A -> A. x y e. A )  | 
						|
| 2 | bnj1316.2 | |- ( y e. B -> A. x y e. B )  | 
						|
| 3 | 1 | nfcii | |- F/_ x A  | 
						
| 4 | 2 | nfcii | |- F/_ x B  | 
						
| 5 | 3 4 | nfeq | |- F/ x A = B  | 
						
| 6 | 5 | nf5ri | |- ( A = B -> A. x A = B )  | 
						
| 7 | 6 | bnj956 | |- ( A = B -> U_ x e. A C = U_ x e. B C )  |