Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1316.1 | |- ( y e. A -> A. x y e. A ) |
|
bnj1316.2 | |- ( y e. B -> A. x y e. B ) |
||
Assertion | bnj1316 | |- ( A = B -> U_ x e. A C = U_ x e. B C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1316.1 | |- ( y e. A -> A. x y e. A ) |
|
2 | bnj1316.2 | |- ( y e. B -> A. x y e. B ) |
|
3 | 1 | nfcii | |- F/_ x A |
4 | 2 | nfcii | |- F/_ x B |
5 | 3 4 | nfeq | |- F/ x A = B |
6 | 5 | nf5ri | |- ( A = B -> A. x A = B ) |
7 | 6 | bnj956 | |- ( A = B -> U_ x e. A C = U_ x e. B C ) |