Metamath Proof Explorer


Theorem bnj1316

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1316.1
|- ( y e. A -> A. x y e. A )
bnj1316.2
|- ( y e. B -> A. x y e. B )
Assertion bnj1316
|- ( A = B -> U_ x e. A C = U_ x e. B C )

Proof

Step Hyp Ref Expression
1 bnj1316.1
 |-  ( y e. A -> A. x y e. A )
2 bnj1316.2
 |-  ( y e. B -> A. x y e. B )
3 1 nfcii
 |-  F/_ x A
4 2 nfcii
 |-  F/_ x B
5 3 4 nfeq
 |-  F/ x A = B
6 5 nf5ri
 |-  ( A = B -> A. x A = B )
7 6 bnj956
 |-  ( A = B -> U_ x e. A C = U_ x e. B C )