Metamath Proof Explorer


Theorem bnj1317

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1317.1
|- A = { x | ph }
Assertion bnj1317
|- ( y e. A -> A. x y e. A )

Proof

Step Hyp Ref Expression
1 bnj1317.1
 |-  A = { x | ph }
2 hbab1
 |-  ( y e. { x | ph } -> A. x y e. { x | ph } )
3 1 2 hbxfreq
 |-  ( y e. A -> A. x y e. A )