Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1317.1 | |- A = { x | ph } |
|
Assertion | bnj1317 | |- ( y e. A -> A. x y e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1317.1 | |- A = { x | ph } |
|
2 | hbab1 | |- ( y e. { x | ph } -> A. x y e. { x | ph } ) |
|
3 | 1 2 | hbxfreq | |- ( y e. A -> A. x y e. A ) |