Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1317.1 | |- A = { x | ph } | 
					|
| Assertion | bnj1317 | |- ( y e. A -> A. x y e. A )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1317.1 |  |-  A = { x | ph } | 
						|
| 2 | hbab1 |  |-  ( y e. { x | ph } -> A. x y e. { x | ph } ) | 
						|
| 3 | 1 2 | hbxfreq | |- ( y e. A -> A. x y e. A )  |