Step |
Hyp |
Ref |
Expression |
1 |
|
bnj602 |
|- ( X = Y -> _pred ( X , A , R ) = _pred ( Y , A , R ) ) |
2 |
1
|
eqeq2d |
|- ( X = Y -> ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( f ` (/) ) = _pred ( Y , A , R ) ) ) |
3 |
2
|
3anbi2d |
|- ( X = Y -> ( ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
4 |
3
|
rexbidv |
|- ( X = Y -> ( E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
5 |
4
|
abbidv |
|- ( X = Y -> { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } = { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } ) |
6 |
|
hbab1 |
|- ( z e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> A. f z e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } ) |
7 |
|
hbab1 |
|- ( z e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> A. f z e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } ) |
8 |
6 7
|
bnj1316 |
|- ( { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } = { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) ) |
9 |
5 8
|
syl |
|- ( X = Y -> U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) ) |
10 |
|
biid |
|- ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
11 |
|
biid |
|- ( A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
12 |
|
eqid |
|- ( _om \ { (/) } ) = ( _om \ { (/) } ) |
13 |
|
eqid |
|- { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } = { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } |
14 |
10 11 12 13
|
bnj882 |
|- _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
15 |
|
biid |
|- ( ( f ` (/) ) = _pred ( Y , A , R ) <-> ( f ` (/) ) = _pred ( Y , A , R ) ) |
16 |
|
eqid |
|- { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } = { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } |
17 |
15 11 12 16
|
bnj882 |
|- _trCl ( Y , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
18 |
9 14 17
|
3eqtr4g |
|- ( X = Y -> _trCl ( X , A , R ) = _trCl ( Y , A , R ) ) |