Metamath Proof Explorer


Theorem bnj132

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 26-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj132.1
|- ( ph <-> E. x ( ps -> ch ) )
Assertion bnj132
|- ( ph <-> ( ps -> E. x ch ) )

Proof

Step Hyp Ref Expression
1 bnj132.1
 |-  ( ph <-> E. x ( ps -> ch ) )
2 19.37v
 |-  ( E. x ( ps -> ch ) <-> ( ps -> E. x ch ) )
3 1 2 bitri
 |-  ( ph <-> ( ps -> E. x ch ) )