Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 26-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj132.1 | |- ( ph <-> E. x ( ps -> ch ) ) |
|
Assertion | bnj132 | |- ( ph <-> ( ps -> E. x ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj132.1 | |- ( ph <-> E. x ( ps -> ch ) ) |
|
2 | 19.37v | |- ( E. x ( ps -> ch ) <-> ( ps -> E. x ch ) ) |
|
3 | 1 2 | bitri | |- ( ph <-> ( ps -> E. x ch ) ) |