Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1326.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1326.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1326.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1326.4 |
|- D = ( dom g i^i dom h ) |
5 |
|
eleq1w |
|- ( q = h -> ( q e. C <-> h e. C ) ) |
6 |
5
|
3anbi3d |
|- ( q = h -> ( ( R _FrSe A /\ g e. C /\ q e. C ) <-> ( R _FrSe A /\ g e. C /\ h e. C ) ) ) |
7 |
|
dmeq |
|- ( q = h -> dom q = dom h ) |
8 |
7
|
ineq2d |
|- ( q = h -> ( dom g i^i dom q ) = ( dom g i^i dom h ) ) |
9 |
8
|
reseq2d |
|- ( q = h -> ( g |` ( dom g i^i dom q ) ) = ( g |` ( dom g i^i dom h ) ) ) |
10 |
4
|
reseq2i |
|- ( g |` D ) = ( g |` ( dom g i^i dom h ) ) |
11 |
9 10
|
eqtr4di |
|- ( q = h -> ( g |` ( dom g i^i dom q ) ) = ( g |` D ) ) |
12 |
8
|
reseq2d |
|- ( q = h -> ( q |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom h ) ) ) |
13 |
|
reseq1 |
|- ( q = h -> ( q |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) ) |
14 |
12 13
|
eqtrd |
|- ( q = h -> ( q |` ( dom g i^i dom q ) ) = ( h |` ( dom g i^i dom h ) ) ) |
15 |
4
|
reseq2i |
|- ( h |` D ) = ( h |` ( dom g i^i dom h ) ) |
16 |
14 15
|
eqtr4di |
|- ( q = h -> ( q |` ( dom g i^i dom q ) ) = ( h |` D ) ) |
17 |
11 16
|
eqeq12d |
|- ( q = h -> ( ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) <-> ( g |` D ) = ( h |` D ) ) ) |
18 |
6 17
|
imbi12d |
|- ( q = h -> ( ( ( R _FrSe A /\ g e. C /\ q e. C ) -> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) <-> ( ( R _FrSe A /\ g e. C /\ h e. C ) -> ( g |` D ) = ( h |` D ) ) ) ) |
19 |
|
eleq1w |
|- ( p = g -> ( p e. C <-> g e. C ) ) |
20 |
19
|
3anbi2d |
|- ( p = g -> ( ( R _FrSe A /\ p e. C /\ q e. C ) <-> ( R _FrSe A /\ g e. C /\ q e. C ) ) ) |
21 |
|
dmeq |
|- ( p = g -> dom p = dom g ) |
22 |
21
|
ineq1d |
|- ( p = g -> ( dom p i^i dom q ) = ( dom g i^i dom q ) ) |
23 |
22
|
reseq2d |
|- ( p = g -> ( p |` ( dom p i^i dom q ) ) = ( p |` ( dom g i^i dom q ) ) ) |
24 |
|
reseq1 |
|- ( p = g -> ( p |` ( dom g i^i dom q ) ) = ( g |` ( dom g i^i dom q ) ) ) |
25 |
23 24
|
eqtrd |
|- ( p = g -> ( p |` ( dom p i^i dom q ) ) = ( g |` ( dom g i^i dom q ) ) ) |
26 |
22
|
reseq2d |
|- ( p = g -> ( q |` ( dom p i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) |
27 |
25 26
|
eqeq12d |
|- ( p = g -> ( ( p |` ( dom p i^i dom q ) ) = ( q |` ( dom p i^i dom q ) ) <-> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) ) |
28 |
20 27
|
imbi12d |
|- ( p = g -> ( ( ( R _FrSe A /\ p e. C /\ q e. C ) -> ( p |` ( dom p i^i dom q ) ) = ( q |` ( dom p i^i dom q ) ) ) <-> ( ( R _FrSe A /\ g e. C /\ q e. C ) -> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) ) ) |
29 |
|
eqid |
|- ( dom p i^i dom q ) = ( dom p i^i dom q ) |
30 |
1 2 3 29
|
bnj1311 |
|- ( ( R _FrSe A /\ p e. C /\ q e. C ) -> ( p |` ( dom p i^i dom q ) ) = ( q |` ( dom p i^i dom q ) ) ) |
31 |
28 30
|
chvarvv |
|- ( ( R _FrSe A /\ g e. C /\ q e. C ) -> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) |
32 |
18 31
|
chvarvv |
|- ( ( R _FrSe A /\ g e. C /\ h e. C ) -> ( g |` D ) = ( h |` D ) ) |