| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1326.1 | 
							 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
						
						
							| 2 | 
							
								
							 | 
							bnj1326.2 | 
							 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1326.3 | 
							 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
						
							| 4 | 
							
								
							 | 
							bnj1326.4 | 
							 |-  D = ( dom g i^i dom h )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1w | 
							 |-  ( q = h -> ( q e. C <-> h e. C ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3anbi3d | 
							 |-  ( q = h -> ( ( R _FrSe A /\ g e. C /\ q e. C ) <-> ( R _FrSe A /\ g e. C /\ h e. C ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							dmeq | 
							 |-  ( q = h -> dom q = dom h )  | 
						
						
							| 8 | 
							
								7
							 | 
							ineq2d | 
							 |-  ( q = h -> ( dom g i^i dom q ) = ( dom g i^i dom h ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							reseq2d | 
							 |-  ( q = h -> ( g |` ( dom g i^i dom q ) ) = ( g |` ( dom g i^i dom h ) ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							reseq2i | 
							 |-  ( g |` D ) = ( g |` ( dom g i^i dom h ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr4di | 
							 |-  ( q = h -> ( g |` ( dom g i^i dom q ) ) = ( g |` D ) )  | 
						
						
							| 12 | 
							
								8
							 | 
							reseq2d | 
							 |-  ( q = h -> ( q |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom h ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							reseq1 | 
							 |-  ( q = h -> ( q |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqtrd | 
							 |-  ( q = h -> ( q |` ( dom g i^i dom q ) ) = ( h |` ( dom g i^i dom h ) ) )  | 
						
						
							| 15 | 
							
								4
							 | 
							reseq2i | 
							 |-  ( h |` D ) = ( h |` ( dom g i^i dom h ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtr4di | 
							 |-  ( q = h -> ( q |` ( dom g i^i dom q ) ) = ( h |` D ) )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							eqeq12d | 
							 |-  ( q = h -> ( ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) <-> ( g |` D ) = ( h |` D ) ) )  | 
						
						
							| 18 | 
							
								6 17
							 | 
							imbi12d | 
							 |-  ( q = h -> ( ( ( R _FrSe A /\ g e. C /\ q e. C ) -> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) <-> ( ( R _FrSe A /\ g e. C /\ h e. C ) -> ( g |` D ) = ( h |` D ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1w | 
							 |-  ( p = g -> ( p e. C <-> g e. C ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							3anbi2d | 
							 |-  ( p = g -> ( ( R _FrSe A /\ p e. C /\ q e. C ) <-> ( R _FrSe A /\ g e. C /\ q e. C ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							dmeq | 
							 |-  ( p = g -> dom p = dom g )  | 
						
						
							| 22 | 
							
								21
							 | 
							ineq1d | 
							 |-  ( p = g -> ( dom p i^i dom q ) = ( dom g i^i dom q ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							reseq2d | 
							 |-  ( p = g -> ( p |` ( dom p i^i dom q ) ) = ( p |` ( dom g i^i dom q ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							reseq1 | 
							 |-  ( p = g -> ( p |` ( dom g i^i dom q ) ) = ( g |` ( dom g i^i dom q ) ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							eqtrd | 
							 |-  ( p = g -> ( p |` ( dom p i^i dom q ) ) = ( g |` ( dom g i^i dom q ) ) )  | 
						
						
							| 26 | 
							
								22
							 | 
							reseq2d | 
							 |-  ( p = g -> ( q |` ( dom p i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eqeq12d | 
							 |-  ( p = g -> ( ( p |` ( dom p i^i dom q ) ) = ( q |` ( dom p i^i dom q ) ) <-> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) )  | 
						
						
							| 28 | 
							
								20 27
							 | 
							imbi12d | 
							 |-  ( p = g -> ( ( ( R _FrSe A /\ p e. C /\ q e. C ) -> ( p |` ( dom p i^i dom q ) ) = ( q |` ( dom p i^i dom q ) ) ) <-> ( ( R _FrSe A /\ g e. C /\ q e. C ) -> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							 |-  ( dom p i^i dom q ) = ( dom p i^i dom q )  | 
						
						
							| 30 | 
							
								1 2 3 29
							 | 
							bnj1311 | 
							 |-  ( ( R _FrSe A /\ p e. C /\ q e. C ) -> ( p |` ( dom p i^i dom q ) ) = ( q |` ( dom p i^i dom q ) ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							chvarvv | 
							 |-  ( ( R _FrSe A /\ g e. C /\ q e. C ) -> ( g |` ( dom g i^i dom q ) ) = ( q |` ( dom g i^i dom q ) ) )  | 
						
						
							| 32 | 
							
								18 31
							 | 
							chvarvv | 
							 |-  ( ( R _FrSe A /\ g e. C /\ h e. C ) -> ( g |` D ) = ( h |` D ) )  |