Metamath Proof Explorer


Theorem bnj1345

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1345.1
|- ( ph -> E. x ( ps /\ ch ) )
bnj1345.2
|- ( th <-> ( ph /\ ps /\ ch ) )
bnj1345.3
|- ( ph -> A. x ph )
Assertion bnj1345
|- ( ph -> E. x th )

Proof

Step Hyp Ref Expression
1 bnj1345.1
 |-  ( ph -> E. x ( ps /\ ch ) )
2 bnj1345.2
 |-  ( th <-> ( ph /\ ps /\ ch ) )
3 bnj1345.3
 |-  ( ph -> A. x ph )
4 1 3 bnj1275
 |-  ( ph -> E. x ( ph /\ ps /\ ch ) )
5 4 2 bnj1198
 |-  ( ph -> E. x th )