Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1350.1 | |- ( ch -> A. x ch ) |
|
Assertion | bnj1350 | |- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1350.1 | |- ( ch -> A. x ch ) |
|
2 | ax-5 | |- ( ph -> A. x ph ) |
|
3 | ax-5 | |- ( ps -> A. x ps ) |
|
4 | 2 3 1 | hb3an | |- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) ) |