Metamath Proof Explorer


Theorem bnj1350

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1350.1
|- ( ch -> A. x ch )
Assertion bnj1350
|- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 bnj1350.1
 |-  ( ch -> A. x ch )
2 ax-5
 |-  ( ph -> A. x ph )
3 ax-5
 |-  ( ps -> A. x ps )
4 2 3 1 hb3an
 |-  ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )