Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1350.1 | |- ( ch -> A. x ch )  | 
					|
| Assertion | bnj1350 | |- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1350.1 | |- ( ch -> A. x ch )  | 
						|
| 2 | ax-5 | |- ( ph -> A. x ph )  | 
						|
| 3 | ax-5 | |- ( ps -> A. x ps )  | 
						|
| 4 | 2 3 1 | hb3an | |- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )  |