Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1361.1 | |- ( ph -> A. x ( x e. A -> x e. B ) ) |
|
Assertion | bnj1361 | |- ( ph -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1361.1 | |- ( ph -> A. x ( x e. A -> x e. B ) ) |
|
2 | dfss2 | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
3 | 1 2 | sylibr | |- ( ph -> A C_ B ) |