Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1361.1 | |- ( ph -> A. x ( x e. A -> x e. B ) )  | 
					|
| Assertion | bnj1361 | |- ( ph -> A C_ B )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1361.1 | |- ( ph -> A. x ( x e. A -> x e. B ) )  | 
						|
| 2 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) )  | 
						|
| 3 | 1 2 | sylibr | |- ( ph -> A C_ B )  |