Metamath Proof Explorer


Theorem bnj1364

Description: Property of _FrSe . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1364
|- ( R _FrSe A -> R _Se A )

Proof

Step Hyp Ref Expression
1 df-bnj15
 |-  ( R _FrSe A <-> ( R Fr A /\ R _Se A ) )
2 1 simprbi
 |-  ( R _FrSe A -> R _Se A )