Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1374.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1374.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1374.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1374.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1374.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1374.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1374.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1374.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1374.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
9
|
bnj1436 |
|- ( f e. H -> E. y e. _pred ( x , A , R ) ta' ) |
11 |
|
rexex |
|- ( E. y e. _pred ( x , A , R ) ta' -> E. y ta' ) |
12 |
10 11
|
syl |
|- ( f e. H -> E. y ta' ) |
13 |
1 2 3 4 8
|
bnj1373 |
|- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
14 |
13
|
exbii |
|- ( E. y ta' <-> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
15 |
12 14
|
sylib |
|- ( f e. H -> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
16 |
|
exsimpl |
|- ( E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) -> E. y f e. C ) |
17 |
15 16
|
syl |
|- ( f e. H -> E. y f e. C ) |
18 |
17
|
bnj937 |
|- ( f e. H -> f e. C ) |