Metamath Proof Explorer


Theorem bnj1374

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1374.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1374.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1374.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1374.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1374.5
|- D = { x e. A | -. E. f ta }
bnj1374.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1374.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1374.8
|- ( ta' <-> [. y / x ]. ta )
bnj1374.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
Assertion bnj1374
|- ( f e. H -> f e. C )

Proof

Step Hyp Ref Expression
1 bnj1374.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1374.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1374.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1374.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1374.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1374.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1374.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1374.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1374.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 9 bnj1436
 |-  ( f e. H -> E. y e. _pred ( x , A , R ) ta' )
11 rexex
 |-  ( E. y e. _pred ( x , A , R ) ta' -> E. y ta' )
12 10 11 syl
 |-  ( f e. H -> E. y ta' )
13 1 2 3 4 8 bnj1373
 |-  ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
14 13 exbii
 |-  ( E. y ta' <-> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
15 12 14 sylib
 |-  ( f e. H -> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) )
16 exsimpl
 |-  ( E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) -> E. y f e. C )
17 15 16 syl
 |-  ( f e. H -> E. y f e. C )
18 17 bnj937
 |-  ( f e. H -> f e. C )