| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1374.1 | 
							 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
						
						
							| 2 | 
							
								
							 | 
							bnj1374.2 | 
							 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1374.3 | 
							 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
						
							| 4 | 
							
								
							 | 
							bnj1374.4 | 
							 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) | 
						
						
							| 5 | 
							
								
							 | 
							bnj1374.5 | 
							 |-  D = { x e. A | -. E. f ta } | 
						
						
							| 6 | 
							
								
							 | 
							bnj1374.6 | 
							 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1374.7 | 
							 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1374.8 | 
							 |-  ( ta' <-> [. y / x ]. ta )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj1374.9 | 
							 |-  H = { f | E. y e. _pred ( x , A , R ) ta' } | 
						
						
							| 10 | 
							
								9
							 | 
							bnj1436 | 
							 |-  ( f e. H -> E. y e. _pred ( x , A , R ) ta' )  | 
						
						
							| 11 | 
							
								
							 | 
							rexex | 
							 |-  ( E. y e. _pred ( x , A , R ) ta' -> E. y ta' )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							 |-  ( f e. H -> E. y ta' )  | 
						
						
							| 13 | 
							
								1 2 3 4 8
							 | 
							bnj1373 | 
							 |-  ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) | 
						
						
							| 14 | 
							
								13
							 | 
							exbii | 
							 |-  ( E. y ta' <-> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) | 
						
						
							| 15 | 
							
								12 14
							 | 
							sylib | 
							 |-  ( f e. H -> E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) | 
						
						
							| 16 | 
							
								
							 | 
							exsimpl | 
							 |-  ( E. y ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) -> E. y f e. C ) | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							 |-  ( f e. H -> E. y f e. C )  | 
						
						
							| 18 | 
							
								17
							 | 
							bnj937 | 
							 |-  ( f e. H -> f e. C )  |