Metamath Proof Explorer
		
		
		
		Description:  First-order logic and set theory.  (Contributed by Jonathan Ben-Naim, 3-Jun-2011)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						bnj1397.1 | 
						|- ( ph -> E. x ps )  | 
					
					
						 | 
						 | 
						bnj1397.2 | 
						|- ( ps -> A. x ps )  | 
					
				
					 | 
					Assertion | 
					bnj1397 | 
					|- ( ph -> ps )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1397.1 | 
							 |-  ( ph -> E. x ps )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1397.2 | 
							 |-  ( ps -> A. x ps )  | 
						
						
							| 3 | 
							
								2
							 | 
							19.9h | 
							 |-  ( E. x ps <-> ps )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							sylib | 
							 |-  ( ph -> ps )  |