Metamath Proof Explorer


Theorem bnj1397

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1397.1
|- ( ph -> E. x ps )
bnj1397.2
|- ( ps -> A. x ps )
Assertion bnj1397
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 bnj1397.1
 |-  ( ph -> E. x ps )
2 bnj1397.2
 |-  ( ps -> A. x ps )
3 2 19.9h
 |-  ( E. x ps <-> ps )
4 1 3 sylib
 |-  ( ph -> ps )