Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1417.1 |
|- ( ph <-> R _FrSe A ) |
2 |
|
bnj1417.2 |
|- ( ps <-> -. x e. _trCl ( x , A , R ) ) |
3 |
|
bnj1417.3 |
|- ( ch <-> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
4 |
|
bnj1417.4 |
|- ( th <-> ( ph /\ x e. A /\ ch ) ) |
5 |
|
bnj1417.5 |
|- B = ( _pred ( x , A , R ) u. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) |
6 |
1
|
biimpi |
|- ( ph -> R _FrSe A ) |
7 |
|
bnj1418 |
|- ( x e. _pred ( x , A , R ) -> x R x ) |
8 |
7
|
adantl |
|- ( ( th /\ x e. _pred ( x , A , R ) ) -> x R x ) |
9 |
4 6
|
bnj835 |
|- ( th -> R _FrSe A ) |
10 |
|
df-bnj15 |
|- ( R _FrSe A <-> ( R Fr A /\ R _Se A ) ) |
11 |
10
|
simplbi |
|- ( R _FrSe A -> R Fr A ) |
12 |
9 11
|
syl |
|- ( th -> R Fr A ) |
13 |
|
bnj213 |
|- _pred ( x , A , R ) C_ A |
14 |
13
|
sseli |
|- ( x e. _pred ( x , A , R ) -> x e. A ) |
15 |
|
frirr |
|- ( ( R Fr A /\ x e. A ) -> -. x R x ) |
16 |
12 14 15
|
syl2an |
|- ( ( th /\ x e. _pred ( x , A , R ) ) -> -. x R x ) |
17 |
8 16
|
pm2.65da |
|- ( th -> -. x e. _pred ( x , A , R ) ) |
18 |
|
nfv |
|- F/ y ph |
19 |
|
nfv |
|- F/ y x e. A |
20 |
3
|
bnj1095 |
|- ( ch -> A. y ch ) |
21 |
20
|
nf5i |
|- F/ y ch |
22 |
18 19 21
|
nf3an |
|- F/ y ( ph /\ x e. A /\ ch ) |
23 |
4 22
|
nfxfr |
|- F/ y th |
24 |
9
|
ad2antrr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> R _FrSe A ) |
25 |
|
simplr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. _pred ( x , A , R ) ) |
26 |
13 25
|
sselid |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. A ) |
27 |
|
simpr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> x e. _trCl ( y , A , R ) ) |
28 |
|
bnj1125 |
|- ( ( R _FrSe A /\ y e. A /\ x e. _trCl ( y , A , R ) ) -> _trCl ( x , A , R ) C_ _trCl ( y , A , R ) ) |
29 |
24 26 27 28
|
syl3anc |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> _trCl ( x , A , R ) C_ _trCl ( y , A , R ) ) |
30 |
|
bnj1147 |
|- _trCl ( y , A , R ) C_ A |
31 |
30 27
|
sselid |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> x e. A ) |
32 |
|
bnj906 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
33 |
24 31 32
|
syl2anc |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
34 |
33 25
|
sseldd |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. _trCl ( x , A , R ) ) |
35 |
29 34
|
sseldd |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. _trCl ( y , A , R ) ) |
36 |
3
|
biimpi |
|- ( ch -> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
37 |
4 36
|
bnj837 |
|- ( th -> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
39 |
|
bnj1418 |
|- ( y e. _pred ( x , A , R ) -> y R x ) |
40 |
39
|
ad2antlr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y R x ) |
41 |
|
rsp |
|- ( A. y e. A ( y R x -> [. y / x ]. ps ) -> ( y e. A -> ( y R x -> [. y / x ]. ps ) ) ) |
42 |
38 26 40 41
|
syl3c |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> [. y / x ]. ps ) |
43 |
|
vex |
|- y e. _V |
44 |
|
eleq1w |
|- ( x = y -> ( x e. _trCl ( x , A , R ) <-> y e. _trCl ( x , A , R ) ) ) |
45 |
|
bnj1318 |
|- ( x = y -> _trCl ( x , A , R ) = _trCl ( y , A , R ) ) |
46 |
45
|
eleq2d |
|- ( x = y -> ( y e. _trCl ( x , A , R ) <-> y e. _trCl ( y , A , R ) ) ) |
47 |
44 46
|
bitrd |
|- ( x = y -> ( x e. _trCl ( x , A , R ) <-> y e. _trCl ( y , A , R ) ) ) |
48 |
47
|
notbid |
|- ( x = y -> ( -. x e. _trCl ( x , A , R ) <-> -. y e. _trCl ( y , A , R ) ) ) |
49 |
2 48
|
syl5bb |
|- ( x = y -> ( ps <-> -. y e. _trCl ( y , A , R ) ) ) |
50 |
43 49
|
sbcie |
|- ( [. y / x ]. ps <-> -. y e. _trCl ( y , A , R ) ) |
51 |
42 50
|
sylib |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> -. y e. _trCl ( y , A , R ) ) |
52 |
35 51
|
pm2.65da |
|- ( ( th /\ y e. _pred ( x , A , R ) ) -> -. x e. _trCl ( y , A , R ) ) |
53 |
52
|
ex |
|- ( th -> ( y e. _pred ( x , A , R ) -> -. x e. _trCl ( y , A , R ) ) ) |
54 |
23 53
|
ralrimi |
|- ( th -> A. y e. _pred ( x , A , R ) -. x e. _trCl ( y , A , R ) ) |
55 |
|
ralnex |
|- ( A. y e. _pred ( x , A , R ) -. x e. _trCl ( y , A , R ) <-> -. E. y e. _pred ( x , A , R ) x e. _trCl ( y , A , R ) ) |
56 |
54 55
|
sylib |
|- ( th -> -. E. y e. _pred ( x , A , R ) x e. _trCl ( y , A , R ) ) |
57 |
|
eliun |
|- ( x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) <-> E. y e. _pred ( x , A , R ) x e. _trCl ( y , A , R ) ) |
58 |
56 57
|
sylnibr |
|- ( th -> -. x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) |
59 |
|
ioran |
|- ( -. ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) <-> ( -. x e. _pred ( x , A , R ) /\ -. x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) |
60 |
17 58 59
|
sylanbrc |
|- ( th -> -. ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) |
61 |
4
|
simp2bi |
|- ( th -> x e. A ) |
62 |
5
|
bnj1414 |
|- ( ( R _FrSe A /\ x e. A ) -> _trCl ( x , A , R ) = B ) |
63 |
9 61 62
|
syl2anc |
|- ( th -> _trCl ( x , A , R ) = B ) |
64 |
63
|
eleq2d |
|- ( th -> ( x e. _trCl ( x , A , R ) <-> x e. B ) ) |
65 |
5
|
bnj1138 |
|- ( x e. B <-> ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) |
66 |
64 65
|
bitrdi |
|- ( th -> ( x e. _trCl ( x , A , R ) <-> ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) ) |
67 |
60 66
|
mtbird |
|- ( th -> -. x e. _trCl ( x , A , R ) ) |
68 |
67 2
|
sylibr |
|- ( th -> ps ) |
69 |
4 68
|
sylbir |
|- ( ( ph /\ x e. A /\ ch ) -> ps ) |
70 |
69
|
3exp |
|- ( ph -> ( x e. A -> ( ch -> ps ) ) ) |
71 |
70
|
ralrimiv |
|- ( ph -> A. x e. A ( ch -> ps ) ) |
72 |
3
|
bnj1204 |
|- ( ( R _FrSe A /\ A. x e. A ( ch -> ps ) ) -> A. x e. A ps ) |
73 |
6 71 72
|
syl2anc |
|- ( ph -> A. x e. A ps ) |
74 |
2
|
ralbii |
|- ( A. x e. A ps <-> A. x e. A -. x e. _trCl ( x , A , R ) ) |
75 |
73 74
|
sylib |
|- ( ph -> A. x e. A -. x e. _trCl ( x , A , R ) ) |