Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1424.1 | |- A = ( B u. C ) |
|
Assertion | bnj1424 | |- ( D e. A -> ( D e. B \/ D e. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1424.1 | |- A = ( B u. C ) |
|
2 | 1 | bnj1138 | |- ( D e. A <-> ( D e. B \/ D e. C ) ) |
3 | 2 | biimpi | |- ( D e. A -> ( D e. B \/ D e. C ) ) |