Metamath Proof Explorer


Theorem bnj1424

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1424.1
|- A = ( B u. C )
Assertion bnj1424
|- ( D e. A -> ( D e. B \/ D e. C ) )

Proof

Step Hyp Ref Expression
1 bnj1424.1
 |-  A = ( B u. C )
2 1 bnj1138
 |-  ( D e. A <-> ( D e. B \/ D e. C ) )
3 2 biimpi
 |-  ( D e. A -> ( D e. B \/ D e. C ) )