Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1436.1 | |- A = { x | ph } |
|
Assertion | bnj1436 | |- ( x e. A -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1436.1 | |- A = { x | ph } |
|
2 | 1 | abeq2i | |- ( x e. A <-> ph ) |
3 | 2 | biimpi | |- ( x e. A -> ph ) |