Description: First-order logic and set theory. See bnj1441 for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1441g.1 | |- ( x e. A -> A. y x e. A )  | 
					|
| bnj1441g.2 | |- ( ph -> A. y ph )  | 
					||
| Assertion | bnj1441g | |- ( z e. { x e. A | ph } -> A. y z e. { x e. A | ph } ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1441g.1 | |- ( x e. A -> A. y x e. A )  | 
						|
| 2 | bnj1441g.2 | |- ( ph -> A. y ph )  | 
						|
| 3 | df-rab |  |-  { x e. A | ph } = { x | ( x e. A /\ ph ) } | 
						|
| 4 | 1 2 | hban | |- ( ( x e. A /\ ph ) -> A. y ( x e. A /\ ph ) )  | 
						
| 5 | 4 | hbabg |  |-  ( z e. { x | ( x e. A /\ ph ) } -> A. y z e. { x | ( x e. A /\ ph ) } ) | 
						
| 6 | 3 5 | hbxfreq |  |-  ( z e. { x e. A | ph } -> A. y z e. { x e. A | ph } ) |