Metamath Proof Explorer


Theorem bnj1441g

Description: First-order logic and set theory. See bnj1441 for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1441g.1
|- ( x e. A -> A. y x e. A )
bnj1441g.2
|- ( ph -> A. y ph )
Assertion bnj1441g
|- ( z e. { x e. A | ph } -> A. y z e. { x e. A | ph } )

Proof

Step Hyp Ref Expression
1 bnj1441g.1
 |-  ( x e. A -> A. y x e. A )
2 bnj1441g.2
 |-  ( ph -> A. y ph )
3 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
4 1 2 hban
 |-  ( ( x e. A /\ ph ) -> A. y ( x e. A /\ ph ) )
5 4 hbabg
 |-  ( z e. { x | ( x e. A /\ ph ) } -> A. y z e. { x | ( x e. A /\ ph ) } )
6 3 5 hbxfreq
 |-  ( z e. { x e. A | ph } -> A. y z e. { x e. A | ph } )