Metamath Proof Explorer


Theorem bnj1444

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1444.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1444.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1444.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1444.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1444.5
|- D = { x e. A | -. E. f ta }
bnj1444.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1444.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1444.8
|- ( ta' <-> [. y / x ]. ta )
bnj1444.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1444.10
|- P = U. H
bnj1444.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1444.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
bnj1444.13
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >.
bnj1444.14
|- E = ( { x } u. _trCl ( x , A , R ) )
bnj1444.15
|- ( ch -> P Fn _trCl ( x , A , R ) )
bnj1444.16
|- ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) )
bnj1444.17
|- ( th <-> ( ch /\ z e. E ) )
bnj1444.18
|- ( et <-> ( th /\ z e. { x } ) )
bnj1444.19
|- ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) )
bnj1444.20
|- ( rh <-> ( ze /\ f e. H /\ z e. dom f ) )
Assertion bnj1444
|- ( rh -> A. y rh )

Proof

Step Hyp Ref Expression
1 bnj1444.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1444.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1444.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1444.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1444.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1444.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1444.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1444.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1444.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1444.10
 |-  P = U. H
11 bnj1444.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1444.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 bnj1444.13
 |-  W = <. z , ( Q |` _pred ( z , A , R ) ) >.
14 bnj1444.14
 |-  E = ( { x } u. _trCl ( x , A , R ) )
15 bnj1444.15
 |-  ( ch -> P Fn _trCl ( x , A , R ) )
16 bnj1444.16
 |-  ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) )
17 bnj1444.17
 |-  ( th <-> ( ch /\ z e. E ) )
18 bnj1444.18
 |-  ( et <-> ( th /\ z e. { x } ) )
19 bnj1444.19
 |-  ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) )
20 bnj1444.20
 |-  ( rh <-> ( ze /\ f e. H /\ z e. dom f ) )
21 nfv
 |-  F/ y ps
22 nfv
 |-  F/ y x e. D
23 nfra1
 |-  F/ y A. y e. D -. y R x
24 21 22 23 nf3an
 |-  F/ y ( ps /\ x e. D /\ A. y e. D -. y R x )
25 7 24 nfxfr
 |-  F/ y ch
26 nfv
 |-  F/ y z e. E
27 25 26 nfan
 |-  F/ y ( ch /\ z e. E )
28 17 27 nfxfr
 |-  F/ y th
29 nfv
 |-  F/ y z e. _trCl ( x , A , R )
30 28 29 nfan
 |-  F/ y ( th /\ z e. _trCl ( x , A , R ) )
31 19 30 nfxfr
 |-  F/ y ze
32 nfre1
 |-  F/ y E. y e. _pred ( x , A , R ) ta'
33 32 nfab
 |-  F/_ y { f | E. y e. _pred ( x , A , R ) ta' }
34 9 33 nfcxfr
 |-  F/_ y H
35 34 nfcri
 |-  F/ y f e. H
36 nfv
 |-  F/ y z e. dom f
37 31 35 36 nf3an
 |-  F/ y ( ze /\ f e. H /\ z e. dom f )
38 20 37 nfxfr
 |-  F/ y rh
39 38 nf5ri
 |-  ( rh -> A. y rh )