Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1445.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1445.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1445.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1445.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1445.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1445.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1445.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1445.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1445.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1445.10 |
|- P = U. H |
11 |
|
bnj1445.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1445.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1445.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
14 |
|
bnj1445.14 |
|- E = ( { x } u. _trCl ( x , A , R ) ) |
15 |
|
bnj1445.15 |
|- ( ch -> P Fn _trCl ( x , A , R ) ) |
16 |
|
bnj1445.16 |
|- ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) ) |
17 |
|
bnj1445.17 |
|- ( th <-> ( ch /\ z e. E ) ) |
18 |
|
bnj1445.18 |
|- ( et <-> ( th /\ z e. { x } ) ) |
19 |
|
bnj1445.19 |
|- ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) ) |
20 |
|
bnj1445.20 |
|- ( rh <-> ( ze /\ f e. H /\ z e. dom f ) ) |
21 |
|
bnj1445.21 |
|- ( si <-> ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
22 |
|
bnj1445.22 |
|- ( ph <-> ( si /\ d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
23 |
|
bnj1445.23 |
|- X = <. z , ( f |` _pred ( z , A , R ) ) >. |
24 |
|
nfv |
|- F/ d R _FrSe A |
25 |
|
nfre1 |
|- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
26 |
25
|
nfab |
|- F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
27 |
3 26
|
nfcxfr |
|- F/_ d C |
28 |
27
|
nfcri |
|- F/ d f e. C |
29 |
|
nfv |
|- F/ d dom f = ( { x } u. _trCl ( x , A , R ) ) |
30 |
28 29
|
nfan |
|- F/ d ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) |
31 |
4 30
|
nfxfr |
|- F/ d ta |
32 |
31
|
nfex |
|- F/ d E. f ta |
33 |
32
|
nfn |
|- F/ d -. E. f ta |
34 |
|
nfcv |
|- F/_ d A |
35 |
33 34
|
nfrabw |
|- F/_ d { x e. A | -. E. f ta } |
36 |
5 35
|
nfcxfr |
|- F/_ d D |
37 |
|
nfcv |
|- F/_ d (/) |
38 |
36 37
|
nfne |
|- F/ d D =/= (/) |
39 |
24 38
|
nfan |
|- F/ d ( R _FrSe A /\ D =/= (/) ) |
40 |
6 39
|
nfxfr |
|- F/ d ps |
41 |
36
|
nfcri |
|- F/ d x e. D |
42 |
|
nfv |
|- F/ d -. y R x |
43 |
36 42
|
nfralw |
|- F/ d A. y e. D -. y R x |
44 |
40 41 43
|
nf3an |
|- F/ d ( ps /\ x e. D /\ A. y e. D -. y R x ) |
45 |
7 44
|
nfxfr |
|- F/ d ch |
46 |
45
|
nf5ri |
|- ( ch -> A. d ch ) |
47 |
46
|
bnj1351 |
|- ( ( ch /\ z e. E ) -> A. d ( ch /\ z e. E ) ) |
48 |
47
|
nf5i |
|- F/ d ( ch /\ z e. E ) |
49 |
17 48
|
nfxfr |
|- F/ d th |
50 |
|
nfv |
|- F/ d z e. _trCl ( x , A , R ) |
51 |
49 50
|
nfan |
|- F/ d ( th /\ z e. _trCl ( x , A , R ) ) |
52 |
19 51
|
nfxfr |
|- F/ d ze |
53 |
|
nfcv |
|- F/_ d _pred ( x , A , R ) |
54 |
|
nfcv |
|- F/_ d y |
55 |
54 31
|
nfsbcw |
|- F/ d [. y / x ]. ta |
56 |
8 55
|
nfxfr |
|- F/ d ta' |
57 |
53 56
|
nfrex |
|- F/ d E. y e. _pred ( x , A , R ) ta' |
58 |
57
|
nfab |
|- F/_ d { f | E. y e. _pred ( x , A , R ) ta' } |
59 |
9 58
|
nfcxfr |
|- F/_ d H |
60 |
59
|
nfcri |
|- F/ d f e. H |
61 |
|
nfv |
|- F/ d z e. dom f |
62 |
52 60 61
|
nf3an |
|- F/ d ( ze /\ f e. H /\ z e. dom f ) |
63 |
20 62
|
nfxfr |
|- F/ d rh |
64 |
63
|
nf5ri |
|- ( rh -> A. d rh ) |
65 |
|
ax-5 |
|- ( y e. _pred ( x , A , R ) -> A. d y e. _pred ( x , A , R ) ) |
66 |
28
|
nf5ri |
|- ( f e. C -> A. d f e. C ) |
67 |
|
ax-5 |
|- ( dom f = ( { y } u. _trCl ( y , A , R ) ) -> A. d dom f = ( { y } u. _trCl ( y , A , R ) ) ) |
68 |
64 65 66 67
|
bnj982 |
|- ( ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) -> A. d ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
69 |
21 68
|
hbxfrbi |
|- ( si -> A. d si ) |