Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1447.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1447.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1447.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1447.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1447.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1447.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1447.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1447.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1447.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1447.10 |
|- P = U. H |
11 |
|
bnj1447.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1447.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1447.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
14 |
|
nfre1 |
|- F/ y E. y e. _pred ( x , A , R ) ta' |
15 |
14
|
nfab |
|- F/_ y { f | E. y e. _pred ( x , A , R ) ta' } |
16 |
9 15
|
nfcxfr |
|- F/_ y H |
17 |
16
|
nfuni |
|- F/_ y U. H |
18 |
10 17
|
nfcxfr |
|- F/_ y P |
19 |
|
nfcv |
|- F/_ y x |
20 |
|
nfcv |
|- F/_ y G |
21 |
|
nfcv |
|- F/_ y _pred ( x , A , R ) |
22 |
18 21
|
nfres |
|- F/_ y ( P |` _pred ( x , A , R ) ) |
23 |
19 22
|
nfop |
|- F/_ y <. x , ( P |` _pred ( x , A , R ) ) >. |
24 |
11 23
|
nfcxfr |
|- F/_ y Z |
25 |
20 24
|
nffv |
|- F/_ y ( G ` Z ) |
26 |
19 25
|
nfop |
|- F/_ y <. x , ( G ` Z ) >. |
27 |
26
|
nfsn |
|- F/_ y { <. x , ( G ` Z ) >. } |
28 |
18 27
|
nfun |
|- F/_ y ( P u. { <. x , ( G ` Z ) >. } ) |
29 |
12 28
|
nfcxfr |
|- F/_ y Q |
30 |
|
nfcv |
|- F/_ y z |
31 |
29 30
|
nffv |
|- F/_ y ( Q ` z ) |
32 |
|
nfcv |
|- F/_ y _pred ( z , A , R ) |
33 |
29 32
|
nfres |
|- F/_ y ( Q |` _pred ( z , A , R ) ) |
34 |
30 33
|
nfop |
|- F/_ y <. z , ( Q |` _pred ( z , A , R ) ) >. |
35 |
13 34
|
nfcxfr |
|- F/_ y W |
36 |
20 35
|
nffv |
|- F/_ y ( G ` W ) |
37 |
31 36
|
nfeq |
|- F/ y ( Q ` z ) = ( G ` W ) |
38 |
37
|
nf5ri |
|- ( ( Q ` z ) = ( G ` W ) -> A. y ( Q ` z ) = ( G ` W ) ) |