Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1448.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1448.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1448.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1448.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1448.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1448.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1448.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1448.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1448.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1448.10 |
|- P = U. H |
11 |
|
bnj1448.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1448.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1448.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
14 |
9
|
bnj1317 |
|- ( w e. H -> A. f w e. H ) |
15 |
14
|
nfcii |
|- F/_ f H |
16 |
15
|
nfuni |
|- F/_ f U. H |
17 |
10 16
|
nfcxfr |
|- F/_ f P |
18 |
|
nfcv |
|- F/_ f x |
19 |
|
nfcv |
|- F/_ f G |
20 |
|
nfcv |
|- F/_ f _pred ( x , A , R ) |
21 |
17 20
|
nfres |
|- F/_ f ( P |` _pred ( x , A , R ) ) |
22 |
18 21
|
nfop |
|- F/_ f <. x , ( P |` _pred ( x , A , R ) ) >. |
23 |
11 22
|
nfcxfr |
|- F/_ f Z |
24 |
19 23
|
nffv |
|- F/_ f ( G ` Z ) |
25 |
18 24
|
nfop |
|- F/_ f <. x , ( G ` Z ) >. |
26 |
25
|
nfsn |
|- F/_ f { <. x , ( G ` Z ) >. } |
27 |
17 26
|
nfun |
|- F/_ f ( P u. { <. x , ( G ` Z ) >. } ) |
28 |
12 27
|
nfcxfr |
|- F/_ f Q |
29 |
|
nfcv |
|- F/_ f z |
30 |
28 29
|
nffv |
|- F/_ f ( Q ` z ) |
31 |
|
nfcv |
|- F/_ f _pred ( z , A , R ) |
32 |
28 31
|
nfres |
|- F/_ f ( Q |` _pred ( z , A , R ) ) |
33 |
29 32
|
nfop |
|- F/_ f <. z , ( Q |` _pred ( z , A , R ) ) >. |
34 |
13 33
|
nfcxfr |
|- F/_ f W |
35 |
19 34
|
nffv |
|- F/_ f ( G ` W ) |
36 |
30 35
|
nfeq |
|- F/ f ( Q ` z ) = ( G ` W ) |
37 |
36
|
nf5ri |
|- ( ( Q ` z ) = ( G ` W ) -> A. f ( Q ` z ) = ( G ` W ) ) |