Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1450.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1450.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1450.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1450.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1450.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1450.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1450.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1450.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1450.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1450.10 |
|- P = U. H |
11 |
|
bnj1450.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1450.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1450.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
14 |
|
bnj1450.14 |
|- E = ( { x } u. _trCl ( x , A , R ) ) |
15 |
|
bnj1450.15 |
|- ( ch -> P Fn _trCl ( x , A , R ) ) |
16 |
|
bnj1450.16 |
|- ( ch -> Q Fn ( { x } u. _trCl ( x , A , R ) ) ) |
17 |
|
bnj1450.17 |
|- ( th <-> ( ch /\ z e. E ) ) |
18 |
|
bnj1450.18 |
|- ( et <-> ( th /\ z e. { x } ) ) |
19 |
|
bnj1450.19 |
|- ( ze <-> ( th /\ z e. _trCl ( x , A , R ) ) ) |
20 |
|
bnj1450.20 |
|- ( rh <-> ( ze /\ f e. H /\ z e. dom f ) ) |
21 |
|
bnj1450.21 |
|- ( si <-> ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
22 |
|
bnj1450.22 |
|- ( ph <-> ( si /\ d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
23 |
|
bnj1450.23 |
|- X = <. z , ( f |` _pred ( z , A , R ) ) >. |
24 |
19
|
simprbi |
|- ( ze -> z e. _trCl ( x , A , R ) ) |
25 |
15
|
fndmd |
|- ( ch -> dom P = _trCl ( x , A , R ) ) |
26 |
17 25
|
bnj832 |
|- ( th -> dom P = _trCl ( x , A , R ) ) |
27 |
19 26
|
bnj832 |
|- ( ze -> dom P = _trCl ( x , A , R ) ) |
28 |
24 27
|
eleqtrrd |
|- ( ze -> z e. dom P ) |
29 |
10
|
dmeqi |
|- dom P = dom U. H |
30 |
28 29
|
eleqtrdi |
|- ( ze -> z e. dom U. H ) |
31 |
9
|
bnj1317 |
|- ( w e. H -> A. f w e. H ) |
32 |
31
|
bnj1400 |
|- dom U. H = U_ f e. H dom f |
33 |
30 32
|
eleqtrdi |
|- ( ze -> z e. U_ f e. H dom f ) |
34 |
33
|
bnj1405 |
|- ( ze -> E. f e. H z e. dom f ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
bnj1449 |
|- ( ze -> A. f ze ) |
36 |
34 20 35
|
bnj1521 |
|- ( ze -> E. f rh ) |
37 |
9
|
bnj1436 |
|- ( f e. H -> E. y e. _pred ( x , A , R ) ta' ) |
38 |
20 37
|
bnj836 |
|- ( rh -> E. y e. _pred ( x , A , R ) ta' ) |
39 |
1 2 3 4 8
|
bnj1373 |
|- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
40 |
39
|
rexbii |
|- ( E. y e. _pred ( x , A , R ) ta' <-> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
41 |
38 40
|
sylib |
|- ( rh -> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
42 |
41
|
bnj1196 |
|- ( rh -> E. y ( y e. _pred ( x , A , R ) /\ ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) ) |
43 |
|
3anass |
|- ( ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) <-> ( y e. _pred ( x , A , R ) /\ ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) ) |
44 |
42 43
|
bnj1198 |
|- ( rh -> E. y ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) |
45 |
|
bnj252 |
|- ( ( rh /\ y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) <-> ( rh /\ ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) ) |
46 |
21 45
|
bitri |
|- ( si <-> ( rh /\ ( y e. _pred ( x , A , R ) /\ f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) ) |
47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
bnj1444 |
|- ( rh -> A. y rh ) |
48 |
44 46 47
|
bnj1340 |
|- ( rh -> E. y si ) |
49 |
3
|
bnj1436 |
|- ( f e. C -> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
50 |
21 49
|
bnj771 |
|- ( si -> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
51 |
50
|
bnj1196 |
|- ( si -> E. d ( d e. B /\ ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
52 |
|
3anass |
|- ( ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( d e. B /\ ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
53 |
51 52
|
bnj1198 |
|- ( si -> E. d ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
54 |
|
bnj252 |
|- ( ( si /\ d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( si /\ ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
55 |
22 54
|
bitri |
|- ( ph <-> ( si /\ ( d e. B /\ f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
bnj1445 |
|- ( si -> A. d si ) |
57 |
53 55 56
|
bnj1340 |
|- ( si -> E. d ph ) |
58 |
|
fveq2 |
|- ( x = z -> ( f ` x ) = ( f ` z ) ) |
59 |
|
id |
|- ( x = z -> x = z ) |
60 |
|
bnj602 |
|- ( x = z -> _pred ( x , A , R ) = _pred ( z , A , R ) ) |
61 |
60
|
reseq2d |
|- ( x = z -> ( f |` _pred ( x , A , R ) ) = ( f |` _pred ( z , A , R ) ) ) |
62 |
59 61
|
opeq12d |
|- ( x = z -> <. x , ( f |` _pred ( x , A , R ) ) >. = <. z , ( f |` _pred ( z , A , R ) ) >. ) |
63 |
62 2 23
|
3eqtr4g |
|- ( x = z -> Y = X ) |
64 |
63
|
fveq2d |
|- ( x = z -> ( G ` Y ) = ( G ` X ) ) |
65 |
58 64
|
eqeq12d |
|- ( x = z -> ( ( f ` x ) = ( G ` Y ) <-> ( f ` z ) = ( G ` X ) ) ) |
66 |
22
|
bnj1254 |
|- ( ph -> A. x e. d ( f ` x ) = ( G ` Y ) ) |
67 |
20
|
simp3bi |
|- ( rh -> z e. dom f ) |
68 |
21 67
|
bnj769 |
|- ( si -> z e. dom f ) |
69 |
22 68
|
bnj769 |
|- ( ph -> z e. dom f ) |
70 |
|
fndm |
|- ( f Fn d -> dom f = d ) |
71 |
22 70
|
bnj771 |
|- ( ph -> dom f = d ) |
72 |
69 71
|
eleqtrd |
|- ( ph -> z e. d ) |
73 |
65 66 72
|
rspcdva |
|- ( ph -> ( f ` z ) = ( G ` X ) ) |
74 |
16
|
fnfund |
|- ( ch -> Fun Q ) |
75 |
17 74
|
bnj832 |
|- ( th -> Fun Q ) |
76 |
19 75
|
bnj832 |
|- ( ze -> Fun Q ) |
77 |
20 76
|
bnj835 |
|- ( rh -> Fun Q ) |
78 |
21 77
|
bnj769 |
|- ( si -> Fun Q ) |
79 |
22 78
|
bnj769 |
|- ( ph -> Fun Q ) |
80 |
20
|
simp2bi |
|- ( rh -> f e. H ) |
81 |
21 80
|
bnj769 |
|- ( si -> f e. H ) |
82 |
22 81
|
bnj769 |
|- ( ph -> f e. H ) |
83 |
|
elssuni |
|- ( f e. H -> f C_ U. H ) |
84 |
83 10
|
sseqtrrdi |
|- ( f e. H -> f C_ P ) |
85 |
|
ssun3 |
|- ( f C_ P -> f C_ ( P u. { <. x , ( G ` Z ) >. } ) ) |
86 |
85 12
|
sseqtrrdi |
|- ( f C_ P -> f C_ Q ) |
87 |
82 84 86
|
3syl |
|- ( ph -> f C_ Q ) |
88 |
79 87 69
|
bnj1502 |
|- ( ph -> ( Q ` z ) = ( f ` z ) ) |
89 |
60
|
sseq1d |
|- ( x = z -> ( _pred ( x , A , R ) C_ d <-> _pred ( z , A , R ) C_ d ) ) |
90 |
1
|
bnj1517 |
|- ( d e. B -> A. x e. d _pred ( x , A , R ) C_ d ) |
91 |
22 90
|
bnj770 |
|- ( ph -> A. x e. d _pred ( x , A , R ) C_ d ) |
92 |
89 91 72
|
rspcdva |
|- ( ph -> _pred ( z , A , R ) C_ d ) |
93 |
92 71
|
sseqtrrd |
|- ( ph -> _pred ( z , A , R ) C_ dom f ) |
94 |
79 87 93
|
bnj1503 |
|- ( ph -> ( Q |` _pred ( z , A , R ) ) = ( f |` _pred ( z , A , R ) ) ) |
95 |
94
|
opeq2d |
|- ( ph -> <. z , ( Q |` _pred ( z , A , R ) ) >. = <. z , ( f |` _pred ( z , A , R ) ) >. ) |
96 |
95 13 23
|
3eqtr4g |
|- ( ph -> W = X ) |
97 |
96
|
fveq2d |
|- ( ph -> ( G ` W ) = ( G ` X ) ) |
98 |
73 88 97
|
3eqtr4d |
|- ( ph -> ( Q ` z ) = ( G ` W ) ) |
99 |
57 98
|
bnj593 |
|- ( si -> E. d ( Q ` z ) = ( G ` W ) ) |
100 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1446 |
|- ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) ) |
101 |
99 100
|
bnj1397 |
|- ( si -> ( Q ` z ) = ( G ` W ) ) |
102 |
48 101
|
bnj593 |
|- ( rh -> E. y ( Q ` z ) = ( G ` W ) ) |
103 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1447 |
|- ( ( Q ` z ) = ( G ` W ) -> A. y ( Q ` z ) = ( G ` W ) ) |
104 |
102 103
|
bnj1397 |
|- ( rh -> ( Q ` z ) = ( G ` W ) ) |
105 |
36 104
|
bnj593 |
|- ( ze -> E. f ( Q ` z ) = ( G ` W ) ) |
106 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1448 |
|- ( ( Q ` z ) = ( G ` W ) -> A. f ( Q ` z ) = ( G ` W ) ) |
107 |
105 106
|
bnj1397 |
|- ( ze -> ( Q ` z ) = ( G ` W ) ) |