Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1452.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1452.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1452.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1452.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1452.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1452.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1452.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1452.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1452.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1452.10 |
|- P = U. H |
11 |
|
bnj1452.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1452.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1452.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
14 |
|
bnj1452.14 |
|- E = ( { x } u. _trCl ( x , A , R ) ) |
15 |
5 7
|
bnj1212 |
|- ( ch -> x e. A ) |
16 |
15
|
snssd |
|- ( ch -> { x } C_ A ) |
17 |
|
bnj1147 |
|- _trCl ( x , A , R ) C_ A |
18 |
17
|
a1i |
|- ( ch -> _trCl ( x , A , R ) C_ A ) |
19 |
16 18
|
unssd |
|- ( ch -> ( { x } u. _trCl ( x , A , R ) ) C_ A ) |
20 |
14 19
|
eqsstrid |
|- ( ch -> E C_ A ) |
21 |
|
elsni |
|- ( z e. { x } -> z = x ) |
22 |
21
|
adantl |
|- ( ( ( ch /\ z e. E ) /\ z e. { x } ) -> z = x ) |
23 |
|
bnj602 |
|- ( z = x -> _pred ( z , A , R ) = _pred ( x , A , R ) ) |
24 |
22 23
|
syl |
|- ( ( ( ch /\ z e. E ) /\ z e. { x } ) -> _pred ( z , A , R ) = _pred ( x , A , R ) ) |
25 |
6
|
simplbi |
|- ( ps -> R _FrSe A ) |
26 |
7 25
|
bnj835 |
|- ( ch -> R _FrSe A ) |
27 |
|
bnj906 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
28 |
26 15 27
|
syl2anc |
|- ( ch -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
29 |
28
|
ad2antrr |
|- ( ( ( ch /\ z e. E ) /\ z e. { x } ) -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
30 |
24 29
|
eqsstrd |
|- ( ( ( ch /\ z e. E ) /\ z e. { x } ) -> _pred ( z , A , R ) C_ _trCl ( x , A , R ) ) |
31 |
|
ssun4 |
|- ( _pred ( z , A , R ) C_ _trCl ( x , A , R ) -> _pred ( z , A , R ) C_ ( { x } u. _trCl ( x , A , R ) ) ) |
32 |
31 14
|
sseqtrrdi |
|- ( _pred ( z , A , R ) C_ _trCl ( x , A , R ) -> _pred ( z , A , R ) C_ E ) |
33 |
30 32
|
syl |
|- ( ( ( ch /\ z e. E ) /\ z e. { x } ) -> _pred ( z , A , R ) C_ E ) |
34 |
26
|
ad2antrr |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> R _FrSe A ) |
35 |
|
simpr |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> z e. _trCl ( x , A , R ) ) |
36 |
17 35
|
bnj1213 |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> z e. A ) |
37 |
|
bnj906 |
|- ( ( R _FrSe A /\ z e. A ) -> _pred ( z , A , R ) C_ _trCl ( z , A , R ) ) |
38 |
34 36 37
|
syl2anc |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> _pred ( z , A , R ) C_ _trCl ( z , A , R ) ) |
39 |
15
|
ad2antrr |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> x e. A ) |
40 |
|
bnj1125 |
|- ( ( R _FrSe A /\ x e. A /\ z e. _trCl ( x , A , R ) ) -> _trCl ( z , A , R ) C_ _trCl ( x , A , R ) ) |
41 |
34 39 35 40
|
syl3anc |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> _trCl ( z , A , R ) C_ _trCl ( x , A , R ) ) |
42 |
38 41
|
sstrd |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> _pred ( z , A , R ) C_ _trCl ( x , A , R ) ) |
43 |
42 32
|
syl |
|- ( ( ( ch /\ z e. E ) /\ z e. _trCl ( x , A , R ) ) -> _pred ( z , A , R ) C_ E ) |
44 |
14
|
bnj1424 |
|- ( z e. E -> ( z e. { x } \/ z e. _trCl ( x , A , R ) ) ) |
45 |
44
|
adantl |
|- ( ( ch /\ z e. E ) -> ( z e. { x } \/ z e. _trCl ( x , A , R ) ) ) |
46 |
33 43 45
|
mpjaodan |
|- ( ( ch /\ z e. E ) -> _pred ( z , A , R ) C_ E ) |
47 |
46
|
ralrimiva |
|- ( ch -> A. z e. E _pred ( z , A , R ) C_ E ) |
48 |
|
snex |
|- { x } e. _V |
49 |
48
|
a1i |
|- ( ch -> { x } e. _V ) |
50 |
|
bnj893 |
|- ( ( R _FrSe A /\ x e. A ) -> _trCl ( x , A , R ) e. _V ) |
51 |
26 15 50
|
syl2anc |
|- ( ch -> _trCl ( x , A , R ) e. _V ) |
52 |
49 51
|
bnj1149 |
|- ( ch -> ( { x } u. _trCl ( x , A , R ) ) e. _V ) |
53 |
14 52
|
eqeltrid |
|- ( ch -> E e. _V ) |
54 |
1
|
bnj1454 |
|- ( E e. _V -> ( E e. B <-> [. E / d ]. ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) ) ) |
55 |
53 54
|
syl |
|- ( ch -> ( E e. B <-> [. E / d ]. ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) ) ) |
56 |
|
bnj602 |
|- ( x = z -> _pred ( x , A , R ) = _pred ( z , A , R ) ) |
57 |
56
|
sseq1d |
|- ( x = z -> ( _pred ( x , A , R ) C_ d <-> _pred ( z , A , R ) C_ d ) ) |
58 |
57
|
cbvralvw |
|- ( A. x e. d _pred ( x , A , R ) C_ d <-> A. z e. d _pred ( z , A , R ) C_ d ) |
59 |
58
|
anbi2i |
|- ( ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) <-> ( d C_ A /\ A. z e. d _pred ( z , A , R ) C_ d ) ) |
60 |
59
|
sbcbii |
|- ( [. E / d ]. ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) <-> [. E / d ]. ( d C_ A /\ A. z e. d _pred ( z , A , R ) C_ d ) ) |
61 |
55 60
|
bitrdi |
|- ( ch -> ( E e. B <-> [. E / d ]. ( d C_ A /\ A. z e. d _pred ( z , A , R ) C_ d ) ) ) |
62 |
|
sseq1 |
|- ( d = E -> ( d C_ A <-> E C_ A ) ) |
63 |
|
sseq2 |
|- ( d = E -> ( _pred ( z , A , R ) C_ d <-> _pred ( z , A , R ) C_ E ) ) |
64 |
63
|
raleqbi1dv |
|- ( d = E -> ( A. z e. d _pred ( z , A , R ) C_ d <-> A. z e. E _pred ( z , A , R ) C_ E ) ) |
65 |
62 64
|
anbi12d |
|- ( d = E -> ( ( d C_ A /\ A. z e. d _pred ( z , A , R ) C_ d ) <-> ( E C_ A /\ A. z e. E _pred ( z , A , R ) C_ E ) ) ) |
66 |
65
|
sbcieg |
|- ( E e. _V -> ( [. E / d ]. ( d C_ A /\ A. z e. d _pred ( z , A , R ) C_ d ) <-> ( E C_ A /\ A. z e. E _pred ( z , A , R ) C_ E ) ) ) |
67 |
53 66
|
syl |
|- ( ch -> ( [. E / d ]. ( d C_ A /\ A. z e. d _pred ( z , A , R ) C_ d ) <-> ( E C_ A /\ A. z e. E _pred ( z , A , R ) C_ E ) ) ) |
68 |
61 67
|
bitrd |
|- ( ch -> ( E e. B <-> ( E C_ A /\ A. z e. E _pred ( z , A , R ) C_ E ) ) ) |
69 |
20 47 68
|
mpbir2and |
|- ( ch -> E e. B ) |