Metamath Proof Explorer


Theorem bnj1454

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1454.1
|- A = { x | ph }
Assertion bnj1454
|- ( B e. _V -> ( B e. A <-> [. B / x ]. ph ) )

Proof

Step Hyp Ref Expression
1 bnj1454.1
 |-  A = { x | ph }
2 1 eleq2i
 |-  ( B e. A <-> B e. { x | ph } )
3 df-sbc
 |-  ( [. B / x ]. ph <-> B e. { x | ph } )
4 3 a1i
 |-  ( B e. _V -> ( [. B / x ]. ph <-> B e. { x | ph } ) )
5 2 4 bitr4id
 |-  ( B e. _V -> ( B e. A <-> [. B / x ]. ph ) )