Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1454.1 | |- A = { x | ph } |
|
Assertion | bnj1454 | |- ( B e. _V -> ( B e. A <-> [. B / x ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1454.1 | |- A = { x | ph } |
|
2 | 1 | eleq2i | |- ( B e. A <-> B e. { x | ph } ) |
3 | df-sbc | |- ( [. B / x ]. ph <-> B e. { x | ph } ) |
|
4 | 3 | a1i | |- ( B e. _V -> ( [. B / x ]. ph <-> B e. { x | ph } ) ) |
5 | 2 4 | bitr4id | |- ( B e. _V -> ( B e. A <-> [. B / x ]. ph ) ) |