Metamath Proof Explorer


Theorem bnj1459

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1459.1
|- ( ps <-> ( ph /\ x e. A ) )
bnj1459.2
|- ( ps -> ch )
Assertion bnj1459
|- ( ph -> A. x e. A ch )

Proof

Step Hyp Ref Expression
1 bnj1459.1
 |-  ( ps <-> ( ph /\ x e. A ) )
2 bnj1459.2
 |-  ( ps -> ch )
3 1 2 sylbir
 |-  ( ( ph /\ x e. A ) -> ch )
4 3 ralrimiva
 |-  ( ph -> A. x e. A ch )