Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1459.1 | |- ( ps <-> ( ph /\ x e. A ) ) |
|
bnj1459.2 | |- ( ps -> ch ) |
||
Assertion | bnj1459 | |- ( ph -> A. x e. A ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1459.1 | |- ( ps <-> ( ph /\ x e. A ) ) |
|
2 | bnj1459.2 | |- ( ps -> ch ) |
|
3 | 1 2 | sylbir | |- ( ( ph /\ x e. A ) -> ch ) |
4 | 3 | ralrimiva | |- ( ph -> A. x e. A ch ) |