Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1463.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1463.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1463.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1463.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1463.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1463.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1463.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1463.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1463.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1463.10 |
|- P = U. H |
11 |
|
bnj1463.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1463.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1463.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
14 |
|
bnj1463.14 |
|- E = ( { x } u. _trCl ( x , A , R ) ) |
15 |
|
bnj1463.15 |
|- ( ch -> Q e. _V ) |
16 |
|
bnj1463.16 |
|- ( ch -> A. z e. E ( Q ` z ) = ( G ` W ) ) |
17 |
|
bnj1463.17 |
|- ( ch -> Q Fn E ) |
18 |
|
bnj1463.18 |
|- ( ch -> E e. B ) |
19 |
18
|
elexd |
|- ( ch -> E e. _V ) |
20 |
|
eleq1 |
|- ( d = E -> ( d e. B <-> E e. B ) ) |
21 |
|
fneq2 |
|- ( d = E -> ( Q Fn d <-> Q Fn E ) ) |
22 |
|
raleq |
|- ( d = E -> ( A. z e. d ( Q ` z ) = ( G ` W ) <-> A. z e. E ( Q ` z ) = ( G ` W ) ) ) |
23 |
21 22
|
anbi12d |
|- ( d = E -> ( ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) <-> ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) |
24 |
20 23
|
anbi12d |
|- ( d = E -> ( ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) <-> ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) ) |
25 |
1
|
bnj1317 |
|- ( w e. B -> A. d w e. B ) |
26 |
25
|
nfcii |
|- F/_ d B |
27 |
26
|
nfel2 |
|- F/ d E e. B |
28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
bnj1467 |
|- ( w e. Q -> A. d w e. Q ) |
29 |
28
|
nfcii |
|- F/_ d Q |
30 |
|
nfcv |
|- F/_ d E |
31 |
29 30
|
nffn |
|- F/ d Q Fn E |
32 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1446 |
|- ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) ) |
33 |
32
|
nf5i |
|- F/ d ( Q ` z ) = ( G ` W ) |
34 |
30 33
|
nfralw |
|- F/ d A. z e. E ( Q ` z ) = ( G ` W ) |
35 |
31 34
|
nfan |
|- F/ d ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) |
36 |
27 35
|
nfan |
|- F/ d ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) |
37 |
36
|
nf5ri |
|- ( ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) -> A. d ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) |
38 |
18 17 16
|
jca32 |
|- ( ch -> ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) |
39 |
24 37 38
|
bnj1465 |
|- ( ( ch /\ E e. _V ) -> E. d ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
40 |
19 39
|
mpdan |
|- ( ch -> E. d ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
41 |
|
df-rex |
|- ( E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) <-> E. d ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
42 |
40 41
|
sylibr |
|- ( ch -> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) |
43 |
|
nfcv |
|- F/_ f B |
44 |
1 2 3 4 5 6 7 8 9 10 11 12
|
bnj1466 |
|- ( w e. Q -> A. f w e. Q ) |
45 |
44
|
nfcii |
|- F/_ f Q |
46 |
|
nfcv |
|- F/_ f d |
47 |
45 46
|
nffn |
|- F/ f Q Fn d |
48 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1448 |
|- ( ( Q ` z ) = ( G ` W ) -> A. f ( Q ` z ) = ( G ` W ) ) |
49 |
48
|
nf5i |
|- F/ f ( Q ` z ) = ( G ` W ) |
50 |
46 49
|
nfralw |
|- F/ f A. z e. d ( Q ` z ) = ( G ` W ) |
51 |
47 50
|
nfan |
|- F/ f ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) |
52 |
43 51
|
nfrex |
|- F/ f E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) |
53 |
52
|
nf5ri |
|- ( E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) -> A. f E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) |
54 |
29
|
nfeq2 |
|- F/ d f = Q |
55 |
|
fneq1 |
|- ( f = Q -> ( f Fn d <-> Q Fn d ) ) |
56 |
|
fveq1 |
|- ( f = Q -> ( f ` z ) = ( Q ` z ) ) |
57 |
|
reseq1 |
|- ( f = Q -> ( f |` _pred ( z , A , R ) ) = ( Q |` _pred ( z , A , R ) ) ) |
58 |
57
|
opeq2d |
|- ( f = Q -> <. z , ( f |` _pred ( z , A , R ) ) >. = <. z , ( Q |` _pred ( z , A , R ) ) >. ) |
59 |
58 13
|
eqtr4di |
|- ( f = Q -> <. z , ( f |` _pred ( z , A , R ) ) >. = W ) |
60 |
59
|
fveq2d |
|- ( f = Q -> ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) = ( G ` W ) ) |
61 |
56 60
|
eqeq12d |
|- ( f = Q -> ( ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) <-> ( Q ` z ) = ( G ` W ) ) ) |
62 |
61
|
ralbidv |
|- ( f = Q -> ( A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) <-> A. z e. d ( Q ` z ) = ( G ` W ) ) ) |
63 |
55 62
|
anbi12d |
|- ( f = Q -> ( ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
64 |
54 63
|
rexbid |
|- ( f = Q -> ( E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
65 |
53 64 44
|
bnj1468 |
|- ( Q e. _V -> ( [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
66 |
15 65
|
syl |
|- ( ch -> ( [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
67 |
42 66
|
mpbird |
|- ( ch -> [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
68 |
|
fveq2 |
|- ( x = z -> ( f ` x ) = ( f ` z ) ) |
69 |
|
id |
|- ( x = z -> x = z ) |
70 |
|
bnj602 |
|- ( x = z -> _pred ( x , A , R ) = _pred ( z , A , R ) ) |
71 |
70
|
reseq2d |
|- ( x = z -> ( f |` _pred ( x , A , R ) ) = ( f |` _pred ( z , A , R ) ) ) |
72 |
69 71
|
opeq12d |
|- ( x = z -> <. x , ( f |` _pred ( x , A , R ) ) >. = <. z , ( f |` _pred ( z , A , R ) ) >. ) |
73 |
2 72
|
syl5eq |
|- ( x = z -> Y = <. z , ( f |` _pred ( z , A , R ) ) >. ) |
74 |
73
|
fveq2d |
|- ( x = z -> ( G ` Y ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) |
75 |
68 74
|
eqeq12d |
|- ( x = z -> ( ( f ` x ) = ( G ` Y ) <-> ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
76 |
75
|
cbvralvw |
|- ( A. x e. d ( f ` x ) = ( G ` Y ) <-> A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) |
77 |
76
|
anbi2i |
|- ( ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
78 |
77
|
rexbii |
|- ( E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
79 |
78
|
sbcbii |
|- ( [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
80 |
67 79
|
sylibr |
|- ( ch -> [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
81 |
3
|
bnj1454 |
|- ( Q e. _V -> ( Q e. C <-> [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
82 |
15 81
|
syl |
|- ( ch -> ( Q e. C <-> [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
83 |
80 82
|
mpbird |
|- ( ch -> Q e. C ) |