Metamath Proof Explorer


Theorem bnj1464

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1464.1
|- ( ps -> A. x ps )
bnj1464.2
|- ( x = A -> ( ph <-> ps ) )
Assertion bnj1464
|- ( A e. V -> ( [. A / x ]. ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 bnj1464.1
 |-  ( ps -> A. x ps )
2 bnj1464.2
 |-  ( x = A -> ( ph <-> ps ) )
3 1 nf5i
 |-  F/ x ps
4 3 2 sbciegf
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )