Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1464.1 | |- ( ps -> A. x ps ) |
|
bnj1464.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | bnj1464 | |- ( A e. V -> ( [. A / x ]. ph <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1464.1 | |- ( ps -> A. x ps ) |
|
2 | bnj1464.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
3 | 1 | nf5i | |- F/ x ps |
4 | 3 2 | sbciegf | |- ( A e. V -> ( [. A / x ]. ph <-> ps ) ) |